帳號:guest(3.128.197.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):勝勇祥
作者(外文):Otto, Victor
論文名稱(中文):以奈升級液相層析串聯式質譜學方法快速量測眼鏡蛇毒高分子量蛋白質
論文名稱(外文):A nanoflow LC-MS/MS approach for rapid determination of cobra venom high molecular weight proteins
指導教授(中文):吳文桂
指導教授(外文):Wu, Wen-Guey
口試委員(中文):簡昆鎰
李紹禎
口試委員(外文):Chien, Kun-Yi
Lee, Shao-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:106080710
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:63
中文關鍵詞:蛇毒液相層析串聯式質譜學方法眼鏡蛇
外文關鍵詞:Snake venomHigh molecular weight proteinsLiquid chromatographyMass spectrometryProteomics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
眼鏡蛇咬傷在非洲和亞洲的農村地區是常見的醫學問題,被咬傷的受害者會引起神經毒性和局部組織損傷。這種組織破壞特性大多與高度豐富的眼鏡蛇毒細胞毒素有關。有趣的是,一些眼鏡蛇不具備這種細胞毒性屬性,反而有些眼鏡蛇更依賴神經毒素。然而,有另一組蛋白質,叫做高分子量蛋白質(HMW)大量地存在大多數蝰蛇毒液中,它們會引起局部效應,如組織壞死。然而,在眼鏡蛇毒液中,高分子量蛋白質的功能沒有得到適當的闡明,因為它們被認為不會導致主要的蛇咬傷症狀。但是,我們的小組認為眼鏡蛇毒液高分子量蛋白質必須在毒液中發揮重要作用,因此,適當的特徵是必要的。在傳統的分離方法中,高分子量蛋白質由於其分子大小而難以量化。於是,我們首次用以奈升級液相層析串聯式質譜學對於蛇毒進行調查。六種眼鏡蛇毒液(Naja atra, kaouthia, nivea, philippinensis, sputatrix 和Hemachatus haemachatus)的MS/MS結果與兩種不同的定量演算法進行了比較:Top3和iBAQ。我們也采用限制性和審查的眼鏡蛇毒液蛋白資料庫進行定量。Top3 與以前的相同毒液樣本研究相比,表現出更合理的豐度和更高的相關性。我們確定了在六種眼鏡蛇毒液裏含有豐富的三指毒素,並建立了相當數量的高分子量蛋白質,可分別達到 Top3 和 iBAQ 重量百分比的
20% 或 40%。這種定量方法快速量測眼鏡蛇毒液,而且只需要低毒液樣品,降低了分析成本。因此,我們提出了以奈升級液相層析串聯式質譜學和Top3的演算法,用於未來高分子量蛋白質的識別和定量需求。
Cobra bites are a common medical issue in rural parts of Africa and Asia where they cause neurotoxicity and local tissue damage in bitten victims. This tissue destroying property is mostly associated with highly abundant cobra venom cytotoxins. Interestingly, some cobras do not possess this cytotoxic attribute and rely more on neurotoxins. Another group of proteins, high molecular weight proteins (HMW), are present vastly in most viper venoms where they cause local effects such as tissue necrosis. In cobra venom however, their function has not been properly elucidated because they are thought to not contribute to major snakebite symptoms. Nevertheless, our group believes that cobra venom HMW proteins must have an important role in envenomation and therefore proper characterisation is necessary. But in conventional separation methods, HMW proteins are poorly quantified due to their size. Here, we investigate for the first time the use of nanoflow liquid-chromatography coupled with tandem mass spectrometry (nLC-MS/MS) for snake venomics. The MS/MS results of six cobra venoms (Naja atra, kaouthia, nivea, philippinensis, sputatrix and Hemachatus haemachatus) were compared with two different quantification algorithms: Top3 and iBAQ. A restricted and reviewed cobra venom protein database was used for quantification. Top3 showed more reasonable abundances and had higher correlation compared to previous studies with the same venom samples. We determined an abundance of three-finger toxins and established a significant higher amount of HMW proteins that could reach up to 20% or 40% of weight percentage for Top3 and iBAQ, respectively. This approach is fast and low venom sample is required, which decreases the cost of analysis. We therefore propose nLC-MS/MS and the Top3 algorithm for future need in identification and quantification of HMW proteins.
ABBREVIATIONS --------------------------------------------1
Chapter 1 Introduction -------------------------------------3
1.1 Snakebites and cobras ----------------------------------3
1.2 Cobra venom proteins and function cobras ------------4
1.3 Venom proteome determination and significance------7
Chapter 2 Material and methods ---------------------------10
2.1 Venom samples -----------------------------------------10
2.2 Nanoflow LC separation --------------------------------10
2.3 MS/MS analysis -----------------------------------------11
2.4 Construction of sequence database --------------------12
2.5 Quantitative data analysis ------------------------------ 12
2.6 PLA2 activity -------------------------------------------- 13
2.7 Statistical analysis ---------------------------------------14
2.8 Phylogenetic sequence analysis ------------------------14
2.9 Sequence alignment ------------------------------------14
Chapter 3 Results -------------------------------------------15
3.1 Venomics of six cobra venoms with Top3 and iBAQ ---15
3.2 Comparison with the traditional approach -------------16
3.3 HMW protein quantification and evolution ------------17
Chapter 4 Discussion ---------------------------------------35
Conclusion --------------------------------------------------39
References --------------------------------------------------40
Appendix ---------------------------------------------------48
Alvarado, R., Tran, D., Ching, B., and Phinney, B.S. (2010). A comparative study of in-gel digestions using microwave and pressure-accelerated technologies. J Biomol Tech 21, 148-155.
Asad, M.H.H.B., McCleary, R.J.R., Salafutdinov, I., Alam, F., Shah, H.S., Bibi, S., Ali, A., Khalid, S., Hasan, S.M.F., Sabatier, J.-M., et al. (2019). Proteomics study of Southern Punjab Pakistani cobra (Naja naja: formerly Naja naja karachiensis) venom. Toxicological & Environmental Chemistry 101, 91-116.
Calderón-Celis, F., Diez-Fernández, S., Costa-Fernández, J.M., Encinar, J.R., Calvete, J.J., and Sanz-Medel, A. (2016). Elemental Mass Spectrometry for Absolute Intact Protein Quantification without Protein-Specific Standards: Application to Snake Venomics. Analytical Chemistry 88, 9699-9706.
Casewell, N.R., Wagstaff, S.C., Harrison, R.A., Renjifo, C., and Wüster, W. (2011). Domain Loss Facilitates Accelerated Evolution and Neofunctionalization of Duplicate Snake Venom Metalloproteinase Toxin Genes. Mol Biol Evol 28, 2637-2649.
Chippaux, J.-P. (2006). Les Serpents d' Afrique Occidentale et Centrale.
Chong, P.H., Tan, Y.K., Tan, H.N., and Tan, H.C. (2019). Exploring the Diversity and Novelty of Toxin Genes in Naja sumatrana, the Equatorial Spitting Cobra from Malaysia through De Novo Venom-Gland Transcriptomics. Toxins (Basel) 11.
Cornbleet, P.J., and Gochman, N. (1979). Incorrect least-squares regression coefficients in method-comparison analysis. Clinical Chemistry 25, 432.
Costal-Oliveira, F., Stransky, S., Guerra-Duarte, C., Naves de Souza, D.L., Vivas-Ruiz, D.E., Yarlequé, A., Sanchez, E.F., Chávez-Olórtegui, C., and Braga, V.M.M. (2019). L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Scientific Reports 9, 781.
Dhananjaya, B.L., and D’souza, C.J.M. (2010). An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry (Moscow) 75, 1-6.
Dietrich Mebs, I.C. (1991). Snake toxins.
Dubovskii, P.V., and Utkin, Y.N. (2014). Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae 6, 11-18.
Gasanov, S.E., Shrivastava, I.H., Israilov, F.S., Kim, A.A., Rylova, K.A., Zhang, B., and Dagda, R.K. (2015). Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins. PLOS ONE 10, e0129248.
Gopalakrishnakone, P., Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R (2017). Snake Venoms (Springer).
Guan, H.-H., Goh, K.-S., Davamani, F., Wu, P.-L., Huang, Y.-W., Jeyakanthan, J., Wu, W.-g., and Chen, C.-J. (2010). Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. Journal of Structural Biology 169, 294-303.
Gutiérrez, J.M., Burnouf, T., Harrison, R.A., Calvete, J.J., Kuch, U., Warrell, D.A., Williams, D.J., and Global Snakebite, I. (2014). A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull World Health Organ 92, 526-532.
Gutiérrez, J.M., Calvete, J.J., Habib, A.G., Harrison, R.A., Williams, D.J., and Warrell, D.A. (2017). Snakebite envenoming. Nature Reviews Disease Primers 3, 17063.
Huang, H.-W., Liu, B.-S., Chien, K.-Y., Chiang, L.-C., Huang, S.-Y., Sung, W.-C., and Wu, W.-G. (2015a). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of Proteomics 128, 92-104.
Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., and Wu, W.G. (2015b). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104.
Hung, D.-Z., Liau, M.-Y., and Lin-Shiau, S.-Y. (2003). The clinical significance of venom detection in patients of cobra snakebite. Toxicon 41, 409-415.
J. J. Rippey, E.R.a.W.R.B. (1976). A survey of snakebite in the Johannesburg area. SA Medical Journal.
Joubert, F.J. (1977). Snake Venom Toxins. European Journal of Biochemistry 74, 387-396.
Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G., and de Silva, H.J. (2008). The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLOS Medicine 5, e218.
Kearney, E.B., and Singer, T.P. (1951). The l-amino acid oxidases of snake venom. III. Reversible inactivation of l-amino acid oxidases. Archives of Biochemistry and Biophysics 33, 377-396.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547-1549.
Kushal Suryamohan, S.P.K., Joseph Guillory, Matthew Jevit, Markus, Schroeder, Meng Wu, Boney Kuriakose, Oommen K. Mathew, Rajadurai C. Perumal, Ivan Koludarov, Leonard D. Goldstein, Kate Senger, Mandumpala Davis Dixon, Dinesh Velayutham (2019). The Indian cobra reference genome and transcriptome enables comprehensive
2 identification of venom toxins. Nature Genetics.
Lalloo*, D.G., and Theakston, R.D.G. (2003). Snake Antivenoms. Journal of Toxicology: Clinical Toxicology 41, 277-290.
Lee Michael S. Y., S.K.L., King Benedict and Palci Alessandro (2016). Diversification rates and phenotypic evolution in venomous snakes (Elapidae). Royal Society Open Science.
Liu, C.-C., Lin, C.-C., Hsiao, Y.-C., Wang, P.-J., and Yu, J.-S. (2018). Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Journal of Proteomics 187, 59-68.
Lomonte, B., and Calvete, J.J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins including Tropical Diseases 23, 26.
Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research 47, W636-W641.
Malih, I., Ahmad rusmili, M.R., Tee, T.Y., Saile, R., Ghalim, N., and Othman, I. (2014). Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. Journal of Proteomics 96, 240-252.
Marais, J. (2017). Rinkhals (African Snakebite Insitute).
Markland, F.S., and Swenson, S. (2013). Snake venom metalloproteinases. Toxicon 62, 3-18.
Martin Bland, J., and Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327, 307-310.
Melani, R.D., Nogueira, F.C.S., and Domont, G.B. (2017). It is time for top-down venomics %J Journal of Venomous Animals and Toxins including Tropical Diseases. 23.
Panagides, N., Jackson, T.N.W., Ikonomopoulou, M.P., Arbuckle, K., Pretzler, R., Yang, D.C., Ali, S.A., Koludarov, I., Dobson, J., Sanker, B., et al. (2017). How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins (Basel) 9, 103.
Petras, D., Heiss, P., Süssmuth, R.D., and Calvete, J.J. (2015). Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. Journal of Proteome Research 14, 2539-2556.
Ranawaka, U.K., Lalloo, D.G., and de Silva, H.J. (2013). Neurotoxicity in snakebite--the limits of our knowledge. PLoS neglected tropical diseases 7, e2302-e2302.
Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42, W320-W324.
Sánchez, A., Herrera, M., Villalta, M., Solano, D., Segura, Á., Lomonte, B., Gutiérrez, J.M., León, G., and Vargas, M. (2018). Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus. Journal of Proteomics 181, 104-117.
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature 473, 337-342.
Silva, J.C., Gorenstein, M.V., Li, G.-Z., Vissers, J.P.C., and Geromanos, S.J. (2006). Absolute Quantification of Proteins by LCMSE. Molecular & Cellular Proteomics 5, 144.
Tan, C.H., Wong, K.Y., Chong, H.P., Tan, N.H., and Tan, K.Y. (2019). Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. Journal of Proteomics 206, 103418.
Tan, K.Y., Tan, C.H., Chanhome, L., and Tan, N.H. (2017a). Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ 5, e3142-e3142.
Tan, K.Y., Tan, C.H., Fung, S.Y., and Tan, N.H. (2015). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. Journal of Proteomics 120, 105-125.
Tan, N.H., Wong, K.Y., and Tan, C.H. (2017b). Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. Journal of Proteomics 157, 18-32.
Truong, V.N. (2018). Venomics and Cell Toxicity Study on Cobra Venoms from Naja atra, Naja kaouthia and Naja nivea. In Department of Life Science (National Tsing Hua University).
Tsai, M.-H. (2018). The structure and function of N-glycosylation in 5'-nucleotidase (V5NTD) from Taiwan cobra (Naja atra). In Department of Life Science (National Tsing Hua University).
Vogel, C.-W., Bredehorst, R., Fritzinger, D.C., Grunwald, T., Ziegelmüller, P., and Kock, M.A. (1996). Structure and Function of Cobra Venom Factor, the Complement-Activating Protein in Cobra Venom. In Natural Toxins 2: Structure, Mechanism of Action, and Detection, B.R. Singh, and A.T. Tu, eds. (Boston, MA: Springer US), pp. 97-114.
Wang, Y.-L., Kuo, J.-H., Lee, S.-C., Liu, J.-S., Hsieh, Y.-C., Shih, Y.-T., Chen, C.-J., Chiu, J.-J., and Wu, W.-G. (2010). Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. The Journal of biological chemistry 285, 37872-37883.
Warrell, D.A. (1995). Clinical toxicology of snakebite in Africa and the Middle East / Arabian Peninsula. In Handbook of Clinical Toxicology of Animal Venoms and Poisons, J. White, Meier, J. (Eds.), ed. (CRC Press), pp. 433-492.
Watt, G., Padre, L., Tuazon, M.L., Theakston, R.D.G., and Laughlin, L. (1988). Bites by the Philippine Cobra (Naja naja philippinensis): Prominent Neurotoxicity with Minimal Local Signs. 39, 306-311.
Wellner, D. (1966). Evidence for conformational changes in L-amino acid oxidase
associated with reversible inactivation. Biochemistry 5.
Wilson, S.R., Vehus, T., Berg, H.S., and Lundanes, E. (2015). Nano-LC in proteomics: recent advances and approaches. Bioanalysis 7, 1799-1815.
Wu, W.-g., Tjong, S.-C., Wu, P.-l., Kuo, J.-h., and Wu, K. (2010). Role of Heparan Sulfates and Glycosphingolipids in the Pore Formation of Basic Polypeptides of Cobra Cardiotoxin. In Proteins Membrane Binding and Pore Formation, G. Anderluh, and J. Lakey, eds. (New York, NY: Springer New York), pp. 143-149.
Wüster, W., Crookes, S., Ineich, I., Mané, Y., Pook, C.E., Trape, J.-F., and Broadley, D.G. (2007). The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Molecular Phylogenetics and Evolution 45, 437-453.
Yap, M.K.K., Fung, S.Y., Tan, K.Y., and Tan, N.H. (2014). Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Tropica 133, 15-25.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *