|
Alvarado, R., Tran, D., Ching, B., and Phinney, B.S. (2010). A comparative study of in-gel digestions using microwave and pressure-accelerated technologies. J Biomol Tech 21, 148-155. Asad, M.H.H.B., McCleary, R.J.R., Salafutdinov, I., Alam, F., Shah, H.S., Bibi, S., Ali, A., Khalid, S., Hasan, S.M.F., Sabatier, J.-M., et al. (2019). Proteomics study of Southern Punjab Pakistani cobra (Naja naja: formerly Naja naja karachiensis) venom. Toxicological & Environmental Chemistry 101, 91-116. Calderón-Celis, F., Diez-Fernández, S., Costa-Fernández, J.M., Encinar, J.R., Calvete, J.J., and Sanz-Medel, A. (2016). Elemental Mass Spectrometry for Absolute Intact Protein Quantification without Protein-Specific Standards: Application to Snake Venomics. Analytical Chemistry 88, 9699-9706. Casewell, N.R., Wagstaff, S.C., Harrison, R.A., Renjifo, C., and Wüster, W. (2011). Domain Loss Facilitates Accelerated Evolution and Neofunctionalization of Duplicate Snake Venom Metalloproteinase Toxin Genes. Mol Biol Evol 28, 2637-2649. Chippaux, J.-P. (2006). Les Serpents d' Afrique Occidentale et Centrale. Chong, P.H., Tan, Y.K., Tan, H.N., and Tan, H.C. (2019). Exploring the Diversity and Novelty of Toxin Genes in Naja sumatrana, the Equatorial Spitting Cobra from Malaysia through De Novo Venom-Gland Transcriptomics. Toxins (Basel) 11. Cornbleet, P.J., and Gochman, N. (1979). Incorrect least-squares regression coefficients in method-comparison analysis. Clinical Chemistry 25, 432. Costal-Oliveira, F., Stransky, S., Guerra-Duarte, C., Naves de Souza, D.L., Vivas-Ruiz, D.E., Yarlequé, A., Sanchez, E.F., Chávez-Olórtegui, C., and Braga, V.M.M. (2019). L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Scientific Reports 9, 781. Dhananjaya, B.L., and D’souza, C.J.M. (2010). An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry (Moscow) 75, 1-6. Dietrich Mebs, I.C. (1991). Snake toxins. Dubovskii, P.V., and Utkin, Y.N. (2014). Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae 6, 11-18. Gasanov, S.E., Shrivastava, I.H., Israilov, F.S., Kim, A.A., Rylova, K.A., Zhang, B., and Dagda, R.K. (2015). Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins. PLOS ONE 10, e0129248. Gopalakrishnakone, P., Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R (2017). Snake Venoms (Springer). Guan, H.-H., Goh, K.-S., Davamani, F., Wu, P.-L., Huang, Y.-W., Jeyakanthan, J., Wu, W.-g., and Chen, C.-J. (2010). Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. Journal of Structural Biology 169, 294-303. Gutiérrez, J.M., Burnouf, T., Harrison, R.A., Calvete, J.J., Kuch, U., Warrell, D.A., Williams, D.J., and Global Snakebite, I. (2014). A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull World Health Organ 92, 526-532. Gutiérrez, J.M., Calvete, J.J., Habib, A.G., Harrison, R.A., Williams, D.J., and Warrell, D.A. (2017). Snakebite envenoming. Nature Reviews Disease Primers 3, 17063. Huang, H.-W., Liu, B.-S., Chien, K.-Y., Chiang, L.-C., Huang, S.-Y., Sung, W.-C., and Wu, W.-G. (2015a). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of Proteomics 128, 92-104. Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., and Wu, W.G. (2015b). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104. Hung, D.-Z., Liau, M.-Y., and Lin-Shiau, S.-Y. (2003). The clinical significance of venom detection in patients of cobra snakebite. Toxicon 41, 409-415. J. J. Rippey, E.R.a.W.R.B. (1976). A survey of snakebite in the Johannesburg area. SA Medical Journal. Joubert, F.J. (1977). Snake Venom Toxins. European Journal of Biochemistry 74, 387-396. Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G., and de Silva, H.J. (2008). The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLOS Medicine 5, e218. Kearney, E.B., and Singer, T.P. (1951). The l-amino acid oxidases of snake venom. III. Reversible inactivation of l-amino acid oxidases. Archives of Biochemistry and Biophysics 33, 377-396. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547-1549. Kushal Suryamohan, S.P.K., Joseph Guillory, Matthew Jevit, Markus, Schroeder, Meng Wu, Boney Kuriakose, Oommen K. Mathew, Rajadurai C. Perumal, Ivan Koludarov, Leonard D. Goldstein, Kate Senger, Mandumpala Davis Dixon, Dinesh Velayutham (2019). The Indian cobra reference genome and transcriptome enables comprehensive 2 identification of venom toxins. Nature Genetics. Lalloo*, D.G., and Theakston, R.D.G. (2003). Snake Antivenoms. Journal of Toxicology: Clinical Toxicology 41, 277-290. Lee Michael S. Y., S.K.L., King Benedict and Palci Alessandro (2016). Diversification rates and phenotypic evolution in venomous snakes (Elapidae). Royal Society Open Science. Liu, C.-C., Lin, C.-C., Hsiao, Y.-C., Wang, P.-J., and Yu, J.-S. (2018). Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Journal of Proteomics 187, 59-68. Lomonte, B., and Calvete, J.J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins including Tropical Diseases 23, 26. Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research 47, W636-W641. Malih, I., Ahmad rusmili, M.R., Tee, T.Y., Saile, R., Ghalim, N., and Othman, I. (2014). Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. Journal of Proteomics 96, 240-252. Marais, J. (2017). Rinkhals (African Snakebite Insitute). Markland, F.S., and Swenson, S. (2013). Snake venom metalloproteinases. Toxicon 62, 3-18. Martin Bland, J., and Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327, 307-310. Melani, R.D., Nogueira, F.C.S., and Domont, G.B. (2017). It is time for top-down venomics %J Journal of Venomous Animals and Toxins including Tropical Diseases. 23. Panagides, N., Jackson, T.N.W., Ikonomopoulou, M.P., Arbuckle, K., Pretzler, R., Yang, D.C., Ali, S.A., Koludarov, I., Dobson, J., Sanker, B., et al. (2017). How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins (Basel) 9, 103. Petras, D., Heiss, P., Süssmuth, R.D., and Calvete, J.J. (2015). Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. Journal of Proteome Research 14, 2539-2556. Ranawaka, U.K., Lalloo, D.G., and de Silva, H.J. (2013). Neurotoxicity in snakebite--the limits of our knowledge. PLoS neglected tropical diseases 7, e2302-e2302. Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42, W320-W324. Sánchez, A., Herrera, M., Villalta, M., Solano, D., Segura, Á., Lomonte, B., Gutiérrez, J.M., León, G., and Vargas, M. (2018). Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus. Journal of Proteomics 181, 104-117. Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature 473, 337-342. Silva, J.C., Gorenstein, M.V., Li, G.-Z., Vissers, J.P.C., and Geromanos, S.J. (2006). Absolute Quantification of Proteins by LCMSE. Molecular & Cellular Proteomics 5, 144. Tan, C.H., Wong, K.Y., Chong, H.P., Tan, N.H., and Tan, K.Y. (2019). Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. Journal of Proteomics 206, 103418. Tan, K.Y., Tan, C.H., Chanhome, L., and Tan, N.H. (2017a). Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ 5, e3142-e3142. Tan, K.Y., Tan, C.H., Fung, S.Y., and Tan, N.H. (2015). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. Journal of Proteomics 120, 105-125. Tan, N.H., Wong, K.Y., and Tan, C.H. (2017b). Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. Journal of Proteomics 157, 18-32. Truong, V.N. (2018). Venomics and Cell Toxicity Study on Cobra Venoms from Naja atra, Naja kaouthia and Naja nivea. In Department of Life Science (National Tsing Hua University). Tsai, M.-H. (2018). The structure and function of N-glycosylation in 5'-nucleotidase (V5NTD) from Taiwan cobra (Naja atra). In Department of Life Science (National Tsing Hua University). Vogel, C.-W., Bredehorst, R., Fritzinger, D.C., Grunwald, T., Ziegelmüller, P., and Kock, M.A. (1996). Structure and Function of Cobra Venom Factor, the Complement-Activating Protein in Cobra Venom. In Natural Toxins 2: Structure, Mechanism of Action, and Detection, B.R. Singh, and A.T. Tu, eds. (Boston, MA: Springer US), pp. 97-114. Wang, Y.-L., Kuo, J.-H., Lee, S.-C., Liu, J.-S., Hsieh, Y.-C., Shih, Y.-T., Chen, C.-J., Chiu, J.-J., and Wu, W.-G. (2010). Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. The Journal of biological chemistry 285, 37872-37883. Warrell, D.A. (1995). Clinical toxicology of snakebite in Africa and the Middle East / Arabian Peninsula. In Handbook of Clinical Toxicology of Animal Venoms and Poisons, J. White, Meier, J. (Eds.), ed. (CRC Press), pp. 433-492. Watt, G., Padre, L., Tuazon, M.L., Theakston, R.D.G., and Laughlin, L. (1988). Bites by the Philippine Cobra (Naja naja philippinensis): Prominent Neurotoxicity with Minimal Local Signs. 39, 306-311. Wellner, D. (1966). Evidence for conformational changes in L-amino acid oxidase associated with reversible inactivation. Biochemistry 5. Wilson, S.R., Vehus, T., Berg, H.S., and Lundanes, E. (2015). Nano-LC in proteomics: recent advances and approaches. Bioanalysis 7, 1799-1815. Wu, W.-g., Tjong, S.-C., Wu, P.-l., Kuo, J.-h., and Wu, K. (2010). Role of Heparan Sulfates and Glycosphingolipids in the Pore Formation of Basic Polypeptides of Cobra Cardiotoxin. In Proteins Membrane Binding and Pore Formation, G. Anderluh, and J. Lakey, eds. (New York, NY: Springer New York), pp. 143-149. Wüster, W., Crookes, S., Ineich, I., Mané, Y., Pook, C.E., Trape, J.-F., and Broadley, D.G. (2007). The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Molecular Phylogenetics and Evolution 45, 437-453. Yap, M.K.K., Fung, S.Y., Tan, K.Y., and Tan, N.H. (2014). Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Tropica 133, 15-25.
|