帳號:guest(3.128.172.195)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝博臣
作者(外文):Hsieh, Poa-Chen
論文名稱(中文):建立新穎小鼠癌症模型以探討FOXM1表現與肺腺癌轉移之關係
論文名稱(外文):Generation of a novel mouse cancer model to explore FOXM1 in lung cancer metastasis.
指導教授(中文):王翊青
指導教授(外文):Wang, I-Ching
口試委員(中文):王群超
林愷悌
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:106080597
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:小鼠癌症模型肺腺癌轉移
外文關鍵詞:FOXM1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺癌是一種全球性的致死率相當高的疾病,而癌症轉移是其中一項主要的死亡原因。目前雖然有很多關於癌症轉移的研究與發表,但癌症轉移相關之調控路徑以及機制仍不清楚。Forkhead Box M1(FOXM1)轉錄因子在先前研究中已經被證明可調節細胞週期相關基因,而在許多癌症相關研究中也證明這個特性對腫瘤的起始發展和轉移至關重要。在本研究中,我們增加FOXM1表現量於帶有KrasG12D / p53 +/-突變的肺癌小鼠模式,研究結果中發現FOXM1促使肺腺癌轉移發生且增加肺癌的嚴重程度進而降低小鼠的存活時間。然而這些腫瘤大多轉移至小鼠的骨頭組織(肋骨)。而在細胞實驗中,我們透過細胞球體培養實驗發現FOXM1促進了細胞球體的形成且與N-cadherin、CXCR4和SOX9的mRNA表現量上升有關。因此我們推論FOXM1促進了肺癌的骨轉移且可能與活化CXCR4 / CXCL12訊號軸線有關。
Lung cancer is one of the leading cause of death worldwide, and metastasis of lung cancer is associated with high mortality. Although the studies of cancer metastasis are accumulating, the mechanisms of cancer metastasis are still unclear. The Forkhead Box M1 (FOXM1) transcription factor has already been proved to regulate cell cycle-related genes, showing that FOXM1 is crucial in tumor initiation, progression and metastasis. In this study, we established a lung cancer mouse model with metastatic phenotype by conditional overexpressing FOXM1 in lung adenocarcinoma harboring Kras*G12Dtg/+/p53+/-. Overexpression of FOXM1 in adenocarcinoma caused a decreasing of overall survival, which was associated with the severity of lung cancer in mice. Majority of FOXM1tg/+/Kras*G12Dtg/+/p53+/- metastatic tumors were detected in the ribs in mice with overexpressing FOXM1. Furthermore, an increased expression level of FOXM1 promoted the formation of cell sphere in culture, which was associated with up-regulated mRNA levels of N-cadherin, CXCR4 and SOX9. Our results demonstrate that the FOXM1 promotes bone metastasis in lung adenocarcinoma development via CXCR4/CXCL12 axis.
Abstract 1
中文摘要 2
Contents 3
Introduction 7
Lung cancer 7
Lung adenocarcinoma (LUAD) 7
Kras mutant and p53 loss genetically engineering mouse model 8
Cancer metastasis 9
Forkhead box M1 (FOXM1) 11
FOXM1 and cancer metastasis 12
CXCR4/CXCL12 axis 13
Hypothesis 15
Materials and methods 16
Transgenic mouse model 16
Micro-CT image and PET image taking 17
Mouse harvest 17
Bone decalcification 18
Immunohistochemistry staining 18
Generation of lentiviral vectors and stable cell lines 20
Cell culture 21
Produce the slides of cell 22
Western blot 22
Sphere culture 24
Promoter analysis 25
Total RNA isolation and Real-time reverse transcription-PCR analysis 25
Results 27
Overexpression of FOXM1 in KrasG12D/p53+/- mouse lung adenocarcinoma promoted tumor progression, bone metastasis and poor survival. 27
Identify bone tumors originated from lung adenocarcinoma harboring transgenic FOXM1 and oncogenic KrasG12D 30
Overexpression of FOXM1 promoted sphere formation of Beas2B-KrasG12D-GSE56 cell line. 32
Overexpression of FOXM1 promotes increasing expression level of mesenchymal-related gene and CXCR4. 34
Conclusion and discussion 36
Figure 1. Overexpress FOXM1 in KrasG12D/p53+/- transgenic mouse model promoted tumor progression, bone tumor formation and made mice had poor survive. 45
Figure 2. Overexpress FOXM1 in KrasG12D/p53+/- transgenic mouse model promoted lung adenocarcinoma metastasis occurrence. 50
Figure 3. Overexpression of FOXM1 promoted sphere formation of Beas2B-KrasG12D-GSE56 cell line. 54
Figure 4. Overexpression of FOXM1 promotes increasing expression level of mesenchymal-related gene and CXCR4. 58
Appendix 59
Table 1. Antibody list 59
Table 2. Mouse list of survival curve 60
Table 3. Primer list 66
Table 4. FOXM1 binding motifs on CXCR4 and Cxcr4 promoters list 67
Table 5. Mouse list of lung tumor formation, bone tumor formation and metastatic-phenotype ratio 68
Supplementary Fugure1. Statistic method of ki67 positive cells in tumor region 69
Reference 71

1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Polanski, J., et al., Histological subtype of lung cancer affects acceptance of illness, severity of pain, and quality of life. Journal of Pain Research, 2018. 11: p. 727-733.
3. Herbst, R.S., D. Morgensztern, and C. Boshoff, The biology and management of non-small cell lung cancer. Nature, 2018. 553(7689): p. 446-454.
4. Travis, W.D., et al., International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc, 2011. 8(5): p. 381-5.
5. Metkus, T.S. and B.S. Kim, Fishman's Pulmonary Diseases and Disorders, 5th Edition (vol 12, pg 1255, 2015). Annals of the American Thoracic Society, 2015. 12(11): p. 1740-1740.
6. Gao, J., et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. 2013. 6(269): p. pl1-pl1.
7. Singh, M., et al., Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. 2010. 28(6): p. 585.
8. Read, A. and T.J.H.m.g. Strachan, Chapter 18: Cancer Genetics. 1999. 2.
9. Surget, S., et al., Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. 2014. 7: p. 57.
10. Ossovskaya, V.S., et al., Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. 1996. 93(19): p. 10309-10314.
11. Mittelman, J.M., A.V.J.S.c. Gudkov, and m. genetics, Generation of p53 suppressor peptide from the fragment of p53 protein. 1999. 25(3): p. 115-128.
12. Webster, M.R., C.H. Kugel, 3rd, and A.T. Weeraratna, When metastasis 'Spns' out of control: Coverage of 'Genome-wide in vivo screen identifies novel host regulators of metastatic colonization'. Pigment Cell Melanoma Res, 2017. 30(4): p. 384-385.
13. Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Crit Rev Oncog, 2013. 18(1-2): p. 43-73.
14. Micalizzi, D.S., S.M. Farabaugh, and H.L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia, 2010. 15(2): p. 117-34.
15. Wang, Y., et al., The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets, 2013. 13(9): p. 963-972.
16. Medici, D., E.D. Hay, and B.R. Olsen, Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell, 2008. 19(11): p. 4875-87.
17. Ribatti, D., G. Mangialardi, and A. Vacca, Stephen Paget and the 'seed and soil' theory of metastatic dissemination. Clin Exp Med, 2006. 6(4): p. 145-9.
18. Chew, V., H.C. Toh, and J.P. Abastado, Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol, 2012. 2012: p. 608406.
19. Hinton, C.V., S. Avraham, and H.K. Avraham, Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis, 2010. 27(2): p. 97-105.
20. Winnard, P.T., Jr., et al., Molecular imaging of metastatic potential. J Nucl Med, 2008. 49 Suppl 2: p. 96S-112S.
21. Govindan, R. and J. Weber, TP53 mutations and lung cancer: not all mutations are created equal. Clin Cancer Res, 2014. 20(17): p. 4419-21.
22. Li, C. and G. Balazsi, A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl, 2018. 4: p. 34.
23. Drak Alsibai, K. and D. Meseure, Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis. Dev Dyn, 2018. 247(3): p. 405-431.
24. Korver, W., et al., The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics, 1997. 46(3): p. 435-42.
25. Wierstra, I. and J. Alves, FOXM1, a typical proliferation-associated transcription factor. Biological Chemistry, 2007. 388(12): p. 1257-1274.
26. Wang, I.C., et al., FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem, 2008. 283(30): p. 20770-8.
27. Laoukili, J., et al., Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol Cell Biol, 2008. 28(9): p. 3076-87.
28. Myatt, S.S. and E.W. Lam, The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer, 2007. 7(11): p. 847-59.
29. Kim, I.M., et al., The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res, 2006. 66(4): p. 2153-61.
30. Kalinichenko, V.V., et al., Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. 2004. 18(7): p. 830-850.
31. Douard, R., et al., Sonic Hedgehog–dependent proliferation in a series of patients with colorectal cancer. 2006. 139(5): p. 665-670.
32. Liu, M., et al., FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. 2006. 66(7): p. 3593-3602.
33. Wonsey, D.R. and M.T.J.C.r. Follettie, Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. 2005. 65(12): p. 5181-5189.
34. Koo, C.-Y., K.W. Muir, and E.W.-F.J.B.e.B.A.-G.R.M. Lam, FOXM1: From cancer initiation to progression and treatment. 2012. 1819(1): p. 28-37.
35. Raychaudhuri, P. and H.J.J.C.r. Park, FoxM1: a master regulator of tumor metastasis. 2011. 71(13): p. 4329-4333.
36. Bao, B., et al., Over‐expression of FoxM1 leads to epithelial–mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. 2011. 112(9): p. 2296-2306.
37. Yang, K., et al., Short hairpin RNA-mediated gene knockdown of FOXM1 inhibits the proliferation and metastasis of human colon cancer cells through reversal of epithelial-to-mesenchymal transformation. 2015. 34(1): p. 40.
38. Yang, C., et al., FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. 2013. 340(1): p. 104-112.
39. Wei, P., et al., FOXM1 promotes lung adenocarcinoma invasion and metastasis by upregulating SNAIL. 2015. 11(2): p. 186.
40. Chen, H., et al., Downregulation of FoxM1 inhibits proliferation, invasion and angiogenesis of HeLa cells in vitro and in vivo. 2014. 45(6): p. 2355-2364.
41. Caruz, A., et al., Genomic organization and promoter characterization of human CXCR4 gene 1. 1998. 426(2): p. 271-278.
42. Burger, J.A. and T.J.J.B. Kipps, CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. 2006. 107(5): p. 1761-1767.
43. Wojcechowskyj, J.A., et al., Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. 2011. 6(9): p. e24918.
44. Domanska, U.M., et al., A review on CXCR4/CXCL12 axis in oncology: no place to hide. 2013. 49(1): p. 219-230.
45. Nagasawa, T., et al., Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. 1996. 382(6592): p. 635.
46. Scala, S., et al., Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. 2005. 11(5): p. 1835-1841.
47. Hall, J.M. and K.S.J.M.E. Korach, Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. 2003. 17(5): p. 792-803.
48. Kim, S.Y., et al., Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. 2008. 25(3): p. 201-211.
49. Kaifi, J.T., et al., Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. 2005. 97(24): p. 1840-1847.
50. Liang, J.-X., et al., Chemokine receptor CXCR4 expression and lung cancer prognosis: a meta-analysis. 2015. 8(4): p. 5163.
51. Müller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. 2001. 410(6824): p. 50.
52. De Falco, V., et al., Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. 2007. 67(24): p. 11821-11829.
53. Zeelenberg, I.S., L. Ruuls-Van Stalle, and E.J.C.r. Roos, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. 2003. 63(13): p. 3833-3839.
54. Taichman, R.S., et al., Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. 2002. 62(6): p. 1832-1837.
55. Powell, E., D. Piwnica-Worms, and H.J.C.d. Piwnica-Worms, Contribution of p53 to metastasis. 2014. 4(4): p. 405-414.
56. Thompson, T., et al., Loss of p53 function leads to metastasis in ras+ myc-initiated mouse prostate cancer. 1995. 10(5): p. 869-879.
57. Sinkevicius, K.W., et al., E-cadherin loss accelerates tumor progression and metastasis in a mouse model of lung adenocarcinoma. 2018. 59(2): p. 237-245.
58. Bowtell, D.D.J.N.R.C., The genesis and evolution of high-grade serous ovarian cancer. 2010. 10(11): p. 803.
59. Pandit, B., M. Halasi, and A.L.J.C.c. Gartel, p53 negatively regulates expression of FoxM1. 2009. 8(20): p. 3425-3427.
60. Balkwill, F.R.J.T.J.o.p., The chemokine system and cancer. 2012. 226(2): p. 148-157.
61. Murphy, P.M.J.N.E.J.o.M., Chemokines and the molecular basis of cancer metastasis. 2001. 345(11): p. 833-835.
62. Kijima, T., et al., Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. 2002. 62(21): p. 6304-6311.
63. Wang, J., et al., The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. 2006. 25(4): p. 573-587.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *