帳號:guest(3.142.166.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周沛寬
作者(外文):Chou, Pei-Kuan
論文名稱(中文):製造骨頭微環境支架以研究骨轉移之乳癌
論文名稱(外文):Preparation of Scaffolds to Mimic Bone Microenvironment for Studying Bone Metastasized Breast Cancer
指導教授(中文):董國忠
張晃猷
指導教授(外文):Dong, Guo-Chung
Chang, Hwan-You
口試委員(中文):王子威
胡威文
口試委員(外文):Wang, Tzu-Wei
Hu, Wei-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080593
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:92
中文關鍵詞:表皮生長因子明膠羥磷灰石三維腫瘤微環境骨轉移
外文關鍵詞:Epidermal growth factorGelatinHydroxyapatite3D bone microenvironmentBone metastasis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:457
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究將以生物醫學工程的角度使用明膠以及羥磷灰石去仿製出接近真實人骨結構的生物材料支架,在其中放入高度侵略性的乳腺癌細胞,結合使用在許多乳癌研究中提出可活化乳癌細胞的細胞因子,以建立乳癌發生骨轉移後的實驗仿體,並藉此仿體探究骨轉移微環境。實驗起始將先探討表皮生長因子對於乳腺癌細胞之影響,再逐步將實驗流程轉移到生物材料上,最終再將此模組導入三維的仿骨生物材料支架,並嘗試討論骨轉移仿體的腫瘤組織型態以及表皮生長因子在微觀三維結構下對乳癌細胞狀態的影響。
實驗結果可以得知,由羥磷灰石以及明膠所製成的仿骨支架可以形成大小約略100-500 μm左右的多微孔架構,並可在仿骨支架中培養乳腺癌細胞後形成乳癌骨轉移仿體。仿體經組織切片可呈現與真實的骨轉移組織相似結構,具有各式孔洞以及孔徑大小各異的網狀結構且含有乳腺癌細胞在其中。更可以非侵入之螢光標記方式檢測乳腺癌細胞在仿體內之位置以及數量差別。最後在微觀立體環境的觀測下,可見乳腺癌細胞會因環境的構成成分與結構不同,出現形態各異的細胞形態以及生長環境的偏好,如:癌細胞偏好在羥磷灰石表面生長而非明膠表面以及癌細胞可順應支架立體的表面結構進行貼附生長等。而表皮生長因子更可以改變癌細胞在這些環境中既定的形態並且促進增生。
In this study, we engineered bone-like biomaterial scaffolds by gelatin and hydroxyapatite, cultured highly invasive breast cancer into scaffolds. We chose a kind of cytokine as breast cancer activator, epidermal growth factor (EGF), which is often mention in others breast cancer relative studies. In order to imitate the pro-metastatic bone microenvironment, we tested the effects of EGF to breast cancer cells in traditional way, then shifted the experiment ideal to scaffolds. Finally, we built bone metastasis models to discuss breast cancer and the effects of EGF in 3D microenvironment.
Gelatin-hydroxyapatite scaffolds can provide 3D platform for breast cancer cells growth and formed bone metastasis phantoms, which porous size are emerged from 100 to 500 μm. In the results of tissue section, we can get bone metastasis-like results, contained variety of porous size, structure and breast cancer cell inside it. Additionally, we can detect the breast cancer location and amount in scaffolds by non-invasive fluorescent detection. Finally, we discuss the results in phantom microenvironment. Depending on scaffolds’ structure and composition, results show that cancer cells might change morphology and choose the growing surface. For example, cancer cells prefer to grow on hydroxyapatite surface than gelatin surface, and the growth can match to scaffolds surface. Moreover, EGF might change these facts, such as promote cancer cells’ proliferation and change their morphology in improper surface, like gelatin.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 X
第1章 緒論 1
1.1 研究動機 1
1.2 現今概況 2
1.2.1 活體外骨轉移研究 2
1.2.2 活體骨轉移研究 3
1.2.3 臨床上骨轉移研究 4
1.3 研究目的 4
第2章 理論基礎 6
2.1 乳癌骨轉移 6
2.1.1 乳癌 6
2.1.2 骨轉移 7
2.2 腫瘤微環境 9
2.2.1 腫瘤微環境中的細胞外基質 9
2.2.2 表皮生長因子 12
2.2.3 表皮生長因子對乳癌細胞影響 12
2.3 腫瘤仿體 14
2.3.1 組織仿體材料 14
2.3.2 仿體培養 17
2.4 腫瘤觀察方式 18
2.4.1 非侵入式觀察 18
2.4.2 侵入式觀察 19
第3章 材料與方法 22
3.1 實驗藥品 22
3.2 實驗儀器 23
3.3 實驗流程圖 24
3.4 乳癌骨轉移仿體 25
3.4.1 仿骨支架 25
3.4.1.1 支架製備 25
3.4.1.2 孔洞率分析 29
3.4.1.3 製備骨轉移微環境 31
3.4.2 乳癌細胞 34
3.4.2.1 乳癌細胞選擇與來源 34
3.4.2.2 乳癌細胞繼代 35
3.4.2.3 乳癌細胞活性測試 36
3.4.3 乳癌與仿骨支架共培養 39
3.4.3.1 生物反應器 39
3.4.3.2 動態培養 41
3.5 乳癌骨轉移仿體分析 42
3.5.1 非侵入式層面 42
3.5.2 侵入式層面 42
3.5.2.1 病理切片觀測 42
3.5.2.2 微觀骨轉移環境觀測 43
3.5.2.3 微觀骨轉移環境觀中細胞偽足分析 43
第4章 結果與討論 44
4.1 三維仿骨支架之特性 44
4.1.1 支架結構觀察與討論 44
4.1.2 支架孔洞調控與分析 47
4.1.2.1 支架液體滲透性 47
4.1.2.2 支架孔洞大小調控 48
4.1.2.3 支架孔洞率分析 49
4.2 表皮生長因子對乳癌細胞之作用效果 51
4.2.1 對乳癌細胞增生之影響 51
4.2.2 對乳癌細胞形態之影響 55
4.2.3 對乳癌細胞遷移之影響 56
4.2.4 本章小結與討論 61
4.3 乳癌細胞在仿骨微環境之分析 62
4.3.1 仿體組織層面分析 62
4.3.1.1 切片分析 62
4.3.1.2 IVIS量化分析 67
4.3.2 仿體微觀分析 72
4.3.2.1 仿骨支架表面狀態與細胞間的關係 72
4.3.2.2 表皮生長因子在仿骨支架對細胞形態影響 76
4.3.2.3 表皮生長因子對乳腺癌細胞仿體組織形成之影響 82
第5章 結論 85
第6章 參考資料 87
第7章 附錄 92
7.1 參與研討會與發表 92
1. Plym, A., et al., Causes of sick leave, disability pension, and death following a breast cancer diagnosis in women of working age. The Breast, 2019. 45: p. 48-55.
2. Gleave, M., et al., Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis. The Journal of urology, 1992. 147(4): p. 1151-1159.
3. Sasser, A.K., et al., Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer letters, 2007. 254(2): p. 255-264.
4. Harunaga, J.S. and K.M. Yamada, Cell-matrix adhesions in 3D. Matrix Biology, 2011. 30(7-8): p. 363-368.
5. Bersini, S., et al., A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials, 2014. 35(8): p. 2454-2461.
6. Holen, I., et al., IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget, 2016. 7(46): p. 75571.
7. Thibaudeau, L., et al., A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Disease models & mechanisms, 2014. 7(2): p. 299-309.
8. Ko, C.-Y., et al., The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials, 2012. 33(3): p. 876-885.
9. Al-Muqbel, K.M., Bone marrow metastasis is an early stage of bone metastasis in breast cancer detected clinically by F18-FDG-PET/CT imaging. BioMed research international, 2017. 2017.
10. O’Sullivan, G.J., F.L. Carty, and C.G. Cronin, Imaging of bone metastasis: an update. World journal of radiology, 2015. 7(8): p. 202.
11. Kuo, C.-Y. and T.-C. Chao, Denosumab for Breast Cancer with Bone Metastases-Induced Hypercalcemia Complicated with Acute Renal Failure. 台灣癌症醫學雜誌, 2015. 2(2): p. 172-176.
12. Rao, S.S., et al., Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer research, 2016. 76(18): p. 5209-5218.
13. Zheng, Y., et al., Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone, 2007. 40(2): p. 471-478.
14. Kubíková, T., et al., Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation. Annals of Anatomy-Anatomischer Anzeiger, 2018. 220: p. 85-96.
15. Koo, M.M., et al., Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national audit of cancer diagnosis. Cancer epidemiology, 2017. 48: p. 140-146.
16. Itoh, M., et al., Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast cancer research and treatment, 2014. 143(2): p. 403-409.
17. Cocco, E., et al., Prevalence and role of HER2 mutations in cancer. Pharmacology & Therapeutics, 2019.
18. Simeone, P., et al. The multiverse nature of epithelial to mesenchymal transition. in Seminars in cancer biology. 2018. Elsevier.
19. McGuire, A., J.A. Brown, and M.J. Kerin, Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer and metastasis reviews, 2015. 34(1): p. 145-155.
20. Cinkaya, A., M. Akin, and A. Sengul, Evaluation of treatment outcomes of triple-negative breast cancer. Journal of cancer research and therapeutics, 2016. 12(1): p. 150.
21. Zeromski, J., et al., Extracellular matrix proteins and VLA integrins expression in the microenvironment of human lung carcinoma. Polish journal of pathology: official journal of the Polish Society of Pathologists, 1995. 46(2): p. 63-69.
22. Tarin, D. and J.E. Price, Influence of microenvironment and vascular anatomy on “metastatic” colonization potential of mammary tumors. Cancer research, 1981. 41(9 Part 1): p. 3604-3609.
23. Verloes, R. and L. Kanarek, Tumour microenvironment studies open new perspectives for immunotherapy. Archives internationales de physiologie et de biochimie, 1976. 84(2): p. 420-422.
24. Petersen, R.C., Free-radical polymer science structural cancer model: a review. Scientifica, 2013. 2013.
25. Valilou, S.F., et al., The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine & growth factor reviews, 2018. 39: p. 46-61.
26. Baron, R., Anatomy and ultrastructure of bone–histogenesis, growth and remodeling, in Endotext [Internet]. 2008, MDText. com, Inc.
27. Petersen, M., Transforming growth factor-β in the pathogenesis of breast cancer metastasis and fibrosis, in Department of Molecular Cell Biology, Endocrinology and Urology, Faculty of Medicine / Leiden University Medical Center (LUMC). 2010, Leiden University.
28. Martin, M., H. Wei, and T. Lu, Targeting microenvironment in cancer therapeutics. Oncotarget, 2016. 7(32): p. 52575.
29. Carpenter, G. and S. Cohen, Epidermal growth factor. Journal of Biological Chemistry, 1990. 265(14): p. 7709-7712.
30. Lu, H.-S., et al., Crystal structure of human epidermal growth factor and its dimerization. Journal of Biological Chemistry, 2001. 276(37): p. 34913-34917.
31. Subik, K., et al., The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast cancer: basic and clinical research, 2010. 4: p. 117822341000400004.
32. Masuda, H., et al., Role of epidermal growth factor receptor in breast cancer. Breast cancer research and treatment, 2012. 136(2): p. 331-345.
33. Liu, Y.-L., et al., Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Scientific reports, 2019. 9(1): p. 3395.
34. Sitarski, A.M., et al., 3D tissue engineered in vitro models of cancer in bone. ACS biomaterials science & engineering, 2017. 4(2): p. 324-336.
35. Zhao, X., et al., Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced healthcare materials, 2016. 5(1): p. 108-118.
36. Rijal, G. and W. Li, A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Science advances, 2017. 3(9): p. e1700764.
37. Madihally, S.V. and H.W. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20(12): p. 1133-1142.
38. Svensson, A., et al., Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005. 26(4): p. 419-431.
39. Bose, S., M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 2012. 30(10): p. 546-554.
40. Ma, H., et al., 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta biomaterialia, 2018.
41. Coluccio, M.L., et al., Microfluidic platforms for cell cultures and investigations. Microelectronic Engineering, 2019. 208: p. 14-28.
42. Huang, Y.-X., et al., Versatile on-stage microfluidic system for long term cell culture, micromanipulation and time lapse assays. Biosensors and Bioelectronics, 2018. 101: p. 66-74.
43. Liu, W., et al., A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. Sensors and Actuators B: Chemical, 2019. 292: p. 111-120.
44. Magrofuoco, E., et al., Cell culture distribution in a three-dimensional porous scaffold in perfusion bioreactor. Biochemical engineering journal, 2019. 146: p. 10-19.
45. Lin, E. and A. Alessio, What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? Journal of cardiovascular computed tomography, 2009. 3(6): p. 403-408.
46. Van der Wall, E., et al., Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion. Heart, 1990. 63(1): p. 12-17.
47. Onoue, K., et al., Temporal subtraction of computed tomography images improves detectability of bone metastases by radiology residents. European radiology, 2019: p. 1-4.
48. Morsing, A., et al., Hybrid PET/MRI in major cancers: a scoping review. European journal of nuclear medicine and molecular imaging, 2019: p. 1-14.
49. Tu, S.-H., et al., A rapid and quantitative method to detect human circulating tumor cells in a preclinical animal model. BMC cancer, 2017. 17(1): p. 440.
50. Zaha, D.C., Significance of immunohistochemistry in breast cancer. World journal of clinical oncology, 2014. 5(3): p. 382.
51. Aboushousha, T., et al., Differential Expression of RAGE, EGFR and Ki-67 in Primary Tumors and Lymph Node Deposits of Breast Carcinoma. Asian Pacific journal of cancer prevention: APJCP, 2018. 19(8): p. 2269.
52. Cekici, A., et al., Evaluation of blood cell attachment on Er: YAG laser applied root surface using scanning electron microscopy. International journal of medical sciences, 2013. 10(5): p. 560.
53. Wight, S.A. and C.J. Zeissler, Environmental scanning electron microscope imaging examples related to particle analysis. Microscopy research and technique, 1993. 25(5‐6): p. 393-397.
54. Krok-Borkowicz, M., et al., Influence of pore size and hydroxyapatite deposition in poly (l-lactide-co-glycolide) scaffolds on osteoblast-like cells cultured in static and dynamic conditions. Materials Letters, 2019. 241: p. 1-5.
55. Tian, Z., W. Liu, and G. Li, The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polymer Degradation and Stability, 2016. 130: p. 264-270.
56. Yuan, C.-M., A Surface Plasmon Resonance Study of Immobilized Epidermal Growth Factors for Bone Tissue Engineering Application., in Graduate Institute of Molecular Medicine College of Life Science. 2014, National Tsing Hua University, Republic of China.
57. Gupta, S.K., et al., Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. BioMed research international, 2013. 2013.
58. Maji, K. and S. Dasgupta, Effect of βtricalcium phosphate nanoparticles additions on the properties of gelatin–chitosan scaffolds. Bioceram Dev Appl, 2017. 7(103): p. 2.
59. de Boer, H.H. and G.G. Maat, Dry bone histology of bone tumours. International journal of paleopathology, 2018. 21: p. 56-63.
60. Ito, Y., Covalently immobilized biosignal molecule materials for tissue engineering. Soft matter, 2008. 4(1): p. 46-56.
61. Chih-Ying Chi, G.-C.D., In vivo evaluation of Cortex Moutan applied on Vascularization of Tissue Engineering Bones 2014: Insitutes of Biomedical Engineering and Naonomedicine, National Health Research Insitutes
62. Zhu, J. and A. Mogilner, Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study. Interface focus, 2016. 6(5): p. 20160040.
63. Kim, D.-H. and D. Wirtz, Focal adhesion size uniquely predicts cell migration. The FASEB Journal, 2013. 27(4): p. 1351-1361.
64. Fisher, S.A., et al., Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials, 2018. 178: p. 751-766.
65. Doyle, A.D. and K.M. Yamada, Mechanosensing via cell-matrix adhesions in 3D microenvironments. Experimental cell research, 2016. 343(1): p. 60-66.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *