|
1. Colin, C.A., The knot book. An elementary introduction to the mathematical theory of knots. 2004, WH Freeman and Company, USA. 2. Richardson, J.S., beta-Sheet topology and the relatedness of proteins. Nature, 1977. 268(5620): p. 495-500. 3. Sonnhammer, E.L., S.R. Eddy, and R. Durbin, Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins, 1997. 28(3): p. 405-20. 4. El-Gebali, S., et al., The Pfam protein families database in 2019. Nucleic Acids Res, 2019. 47(D1): p. D427-D432. 5. Dabrowski-Tumanski, P., et al., KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Res, 2019. 47(D1): p. D367-D375. 6. Mishra, R. and S. Bhushan, Knot theory in understanding proteins. J Math Biol, 2012. 65(6-7): p. 1187-213. 7. Mansfield, M.L., Are there knots in proteins? Nat Struct Biol, 1994. 1(4): p. 213-4. 8. Taylor, W.R. and K. Lin, Protein knots: A tangled problem. Nature, 2003. 421(6918): p. 25. 9. Lou, S.C., et al., The Knotted Protein UCH-L1 Exhibits Partially Unfolded Forms under Native Conditions that Share Common Structural Features with Its Kinetic Folding Intermediates. J Mol Biol, 2016. 428(11): p. 2507-2520. 10. Lee, Y.C. and S.D. Hsu, A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates. J Phys Chem Lett, 2018. 9(9): p. 2433-2437. 11. Schmidberger, J.W., et al., The crystal structure of DehI reveals a new alpha-haloacid dehalogenase fold and active-site mechanism. J Mol Biol, 2008. 378(1): p. 284-94. 12. Bolinger, D., et al., A Stevedore's protein knot. PLoS Comput Biol, 2010. 6(4): p. e1000731. 13. Wang, I., S.Y. Chen, and S.T. Hsu, Folding analysis of the most complex Stevedore's protein knot. Sci Rep, 2016. 6: p. 31514. 14. Chiang, P.K., et al., S-Adenosylmethionine and methylation. FASEB J, 1996. 10(4): p. 471-80. 15. Toyooka, T. and H. Hori, Differences in substrate selectivities of the SPOUT superfamily of methyltransferases. Nucleic Acids Symp Ser (Oxf), 2007(51): p. 445-6. 16. Taylor, A.B., et al., The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res, 2008. 36(5): p. 1542-54. 17. Kim, D.J., et al., Crystal structure of Thermotoga maritima SPOUT superfamily RNA methyltransferase Tm1570 in complex with S-adenosyl-L-methionine. Proteins, 2009. 74(1): p. 245-9. 18. Chen, H.Y. and Y.A. Yuan, Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. J Mol Cell Biol, 2010. 2(6): p. 366-74. 19. Tkaczuk, K.L., et al., Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics, 2007. 8: p. 73. 20. Anantharaman, V., E.V. Koonin, and L. Aravind, SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol, 2002. 4(1): p. 71-5. 21. Hori, H., Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules, 2017. 7(1). 22. Jackman, J.E., et al., Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA, 2003. 9(5): p. 574-85. 23. Purta, E., et al., The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase. BMC Mol Biol, 2006. 7: p. 23. 24. Purta, E., et al., YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA, 2008. 14(10): p. 2234-44. 25. Kempenaers, M., et al., New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA. Nucleic Acids Res, 2010. 38(19): p. 6533-43. 26. Somme, J., et al., Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. RNA, 2014. 20(8): p. 1257-71. 27. Liu, R.J., et al., tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Nucleic Acids Res, 2015. 43(15): p. 7489-503. 28. Lv, F., et al., Structural basis for Sfm1 functioning as a protein arginine methyltransferase. Cell Discov, 2015. 1: p. 15037. 29. Swinehart, W.E. and J.E. Jackman, Diversity in mechanism and function of tRNA methyltransferases. RNA Biol, 2015. 12(4): p. 398-411. 30. Elkins, P.A., et al., Insights into catalysis by a knotted TrmD tRNA methyltransferase. J Mol Biol, 2003. 333(5): p. 931-49. 31. Sakaguchi, R., et al., A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. Chem Biol, 2014. 21(10): p. 1351-1360. 32. Krishnamohan, A. and J.E. Jackman, Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Nucleic Acids Res, 2017. 45(15): p. 9019-9029. 33. Krishnamohan, A. and J.E. Jackman, A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily. Biochemistry, 2019. 58(5): p. 336-345. 34. Young, B.D., et al., Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry, 2012. 51(25): p. 5091-104. 35. Shao, Z., et al., Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res, 2014. 42(1): p. 509-25. 36. Van Laer, B., et al., Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Nucleic Acids Res, 2016. 44(2): p. 940-53. 37. Oerum, S., et al., Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes. J Biol Chem, 2018. 293(33): p. 12862-12876. 38. Singh, R.K., et al., Structural and biochemical analysis of the dual-specificity Trm10 enzyme from Thermococcus kodakaraensis prompts reconsideration of its catalytic mechanism. RNA, 2018. 24(8): p. 1080-1092. 39. Lemey, P., Salemi, M., & Vandamme, A.-M., The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2 ed. 2009: Cambridge University Press. 40. Altekar, G., et al., Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 2004. 20(3): p. 407-15. 41. Lewis, P.O., M.T. Holder, and K.E. Holsinger, Polytomies and Bayesian phylogenetic inference. Syst Biol, 2005. 54(2): p. 241-53. 42. Kozbial, P.Z. and A.R. Mushegian, Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol, 2005. 5: p. 19. 43. Ouzounis, C.A., et al., A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective. Res Microbiol, 2006. 157(1): p. 57-68. 44. Jamroz, M., et al., KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res, 2015. 43(Database issue): p. D306-14. 45. Chuang, Y.C., et al., Untying a Protein Knot by Circular Permutation. J Mol Biol, 2019. 431(4): p. 857-863. 46. Ko, K.T., et al., Untying a Knotted SPOUT RNA Methyltransferase by Circular Permutation Results in a Domain-Swapped Dimer. Structure, 2019. 27(8): p. 1224-1233 e4. 47. Fu, L., et al., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012. 28(23): p. 3150-2. 48. Holm, L., Benchmarking fold detection by DaliLite v.5. Bioinformatics, 2019. 35(24): p. 5326-5327. 49. Camacho, C., et al., BLAST+: architecture and applications. BMC Bioinformatics, 2009. 10: p. 421. 50. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23. 51. Katoh, K. and D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013. 30(4): p. 772-80. 52. Ronquist, F., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 2012. 61(3): p. 539-42. 53. Ronquist, F., J. P. Huelsenbeck, M. Teslenko, C, Zhang, and J. A. A Nylander, MrBayes version 3.2 manual: tutorials and model summaries. 2020: https://github.com/NBISweden/MrBayes. 54. Rambaut, A., et al., Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 2018. 67(5): p. 901-904. 55. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014. 30(9): p. 1312-3. 56. Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006. 22(21): p. 2688-90. 57. Foley, G., et al., Identifying and engineering ancient variants of enzymes using Graphical Representation of Ancestral Sequence Predictions (GRASP). bioRxiv, 2020: p. 2019.12.30.891457. 58. Guex, N., M.C. Peitsch, and T. Schwede, Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 2009. 30 Suppl 1: p. S162-73. 59. Marti-Renom, M.A., et al., Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct, 2000. 29: p. 291-325. 60. Benjamin Webb, A.S., Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 2016. 54(1). 61. Janson, G. and A. Paiardini, PyMod 3: a complete suite for structural bioinformatics in PyMOL. Bioinformatics, 2020. 62. Liu, J., et al., Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus at 2.6 A resolution: a novel methyltransferase fold. Proteins, 2003. 53(2): p. 326-8. 63. Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018. 46(W1): p. W296-W303. 64. Holm, L., et al., Searching protein structure databases with DaliLite v.3. Bioinformatics, 2008. 24(23): p. 2780-1. 65. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 66. Remmert, M., et al., HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods, 2011. 9(2): p. 173-5. 67. Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6): p. 1188-90. 68. Fredrik Ronquist, J.P.H., C.Z. Maxim Teslenko, and J.A.A. Nylander, MrBayes version 3.2 Manual, in Tutorials and Model Summaries. 2020: https://github.com/NBISweden/MrBayes/blob/develop/doc/manual/Manual_MrBayes_v3.2.pdf. 69. Katoh, K., et al., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 2002. 30(14): p. 3059-66. 70. Hutchinson, E.G. and J.M. Thornton, HERA--a program to draw schematic diagrams of protein secondary structures. Proteins, 1990. 8(3): p. 203-12. 71. Laskowski, R.A., et al., PDBsum: Structural summaries of PDB entries. Protein Sci, 2018. 27(1): p. 129-134. 72. Nureki, O., et al., Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Structure, 2004. 12(4): p. 593-602. 73. Thomas, S.R., et al., Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res, 2011. 39(6): p. 2445-57. 74. Koh, C.S., et al., Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep, 2017. 7(1): p. 969. 75. Zarembinski, T.I., et al., Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins, 2003. 50(2): p. 177-83. 76. Perlinska, A.P., et al., Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS Comput Biol, 2020. 16(5): p. e1007904. 77. Schubert, H.L., R.M. Blumenthal, and X. Cheng, Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci, 2003. 28(6): p. 329-35.
|