帳號:guest(3.144.224.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡嘉純
作者(外文):Tsai, Chia-Chun.
論文名稱(中文):轉錄調節因子PsrA透過lasR調控綠膿桿菌PAO1之群體感應
論文名稱(外文):Transcriptional regulator PsrA regulates quorum sensing through lasR in Pseudomonas aeruginosa PAO1
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):林靖婷
高茂傑
口試委員(外文):Lin, Ching-Ting
Kao, Mou-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080586
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:59
中文關鍵詞:綠膿桿菌 PAO1群體感應轉錄調節因子lasRPsrA
外文關鍵詞:Pseudomonas aeruginosa PAO1quorum sensingTranscriptional regulatorlasRPsrA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:548
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
綠膿桿菌為一種機會性致病菌,可引發急性和慢性感染。PsrA是綠膿桿菌的轉錄調節因子,能控制此菌多種毒力相關基因的表現。在野生型PAO1菌株過表現psrA會在許多與群體感應調節相關之表型中顯示出差異,例如綠膿菌素產量的增加、自體誘導物N-acyl homoserine lactone之減少、酪蛋白酶活性降低以及泳動運動和群體移動能力減低。雖然我們發現過表現psrA能活化與綠膿菌素生物合成相關之基因表現,但凝膠電泳遷移分析(EMSA)顯示PsrA不與phzM、phzD2和phzS之啟動子結合,表示PsrA應該不是直接對這些基因進行調控。由於psrA過表達改變了多種與群體感應相關之表現型,且轉錄組分析結果顯示PsrA顯著下調群體感應相關基因lasR,藉由EMSA確認了PsrA可直接與lasR啟動子結合,表示PsrA直接抑制lasR的表現。利用lasR啟動子區域之連續的小片段DNA序列和特定點位突變之lasR啟動子區域DNA片段,找出確切的PsrA結合位點位於5'-TAAACGTTTGCTTA-3'。此外,長鏈脂肪酸-oleate能阻斷PsrA與lasR啟動子之結合,並且恢復psrA過表現菌株的表現型。本實驗證明了PsrA直接調節抑制lasR表現而間接調節了群體感應。而長鏈脂肪酸-oleate能夠阻斷PsrA與lasR啟動子的結合。
Pseudomonas aeruginosa is an opportunistic pathogen that can cause both acute and chronic infections. PsrA is a transcriptional regulator that regulates gene expression of several virulence-related genes in P. aeruginosa. Compared with the wild-type PAO1 strain, the psrA overexpression strain shows difference in several quorum sensing-regulated phenotypes including higher production of pyocyanin, reduced N-acyl homoserine lactone autoinducer, decreased caseinase activity, reduced swimming and swarming motility. Although pyocycanin biosynthetic genes were activated in the psrA overexpressing strain, electrophoretic mobility shift assay (EMSA) showed that PsrA did not bind to the promoter of phzM, phzD2, and phzS. Since psrA overexpression changes several quorum sensing-regulated phenotypes and transcriptome analysis showed that PsrA significantly down regulates quorum sensing related gene lasR, we used EMSA to check whether PsrA binds to the lasR promoter. The results proved that PsrA directly binds to the promoter of lasR. Several truncated and site-specific mutated DNA fragments of the promoter region of lasR were used to find out the exact PsrA binding site. The PsrA binding site was found to be located at 5’-TAAACGTTTGCTTA-3’. In addition, this study demonstrated that long-chain fatty acid oleate blocked the PsrA binding to the lasR promoter and restores several phenotypes of the psrA overexpression strain. This study proves that PsrA down regulates lasR expression and indirectly regulates quorum sensing. Also, long-chain fatty acid oleate can inhibit PsrA binding to lasR promoter.
摘要.......i
ABSTRACT....ii
誌謝.......iii
縮寫字對照表...iv
目錄.......vi
表目錄......viii
圖目錄......ix
壹、前言....10
1.1綠膿桿菌....10
1.2綠膿菌素....11
1.3群體感應....12
1.4 轉錄因子PsrA...13
1.5 研究目的....14
貳、材料與方法...15
2.1 菌株與培養條件細胞培養液製備....15
2.2 細胞培養條件.....15
2.3 綠膿菌素之定量....15
2.4質體 DNA 製備 .....16
2.5聚合酶連鎖反應.....16
2.6 DNA純化........17
2.7 PsrA 蛋白表現與純化..17
2.7.1 IPTG 誘導基因表現..17
2.7.2 His-tag 親和性管柱純化蛋白質...18
2.8聚丙烯醯胺膠體製備與電泳分離...19
2.8.1聚丙烯醯胺膠體製備.......19
2.8.2聚丙烯醯胺膠體電泳分離.....19
2.8.3考馬斯亮藍染色...........20
2.9凝膠電泳遷移試驗...........20
2.10 N-acyl homoserine lactones 訊號分子測試...21
2.11蛋白酶測試...................21
2.12生物膜定量分析.......22
2.13泳動運動能力分析......22
2.14群體移動能力分析......23
參、結果 ........24
3.1 psrA過表現菌株產生大量綠膿菌素.....24
3.2 PsrA蛋白之表現與純化..........24
3.3 PsrA不會與phz啟動子結合........25
3.4 PsrA直接與lasR啟動子結合........25
3.5 Oleate抑制PsrA與lasR啟動子的結合....26
3.6過表現psrA基因使AHL之產生下降......26
3.7過表現psrA基因使群體移動能力減低.....27
3.8過表現psrA使酪蛋白酶產量減少.......28
3.9過表現psrA使生物膜形成減慢與減少.....28
肆、討論.........30
伍、參考文獻.......34
附錄.....59

1. Rumbaugh, K.P., J.A. Griswold, and A.N. Hamood, The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect, 2000. 2(14): p. 1721-31.
2. Barrios, C.C. and L.C. Oliver, A New Treatment Choice against Multi-Drug Resistant Pseudomonas aeruginosa: Doripenem. Journal of Bacteriology & Parasitology, 2014. 5(5).
3. de Bentzmann, S. and P. Plesiat, The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol, 2011. 13(7): p. 1655-65.
4. Holloway, B.W., Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol, 1955. 13(3): p. 572-81.
5. Meyer, J.M., Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol, 2000. 174(3): p. 135-42.
6. Reyes, E.A., et al., Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J Clin Microbiol, 1981. 13(3): p. 456-8.
7. Furukawa, S., S.L. Kuchma, and G.A. O'Toole, Keeping their options open: acute versus persistent infections. J Bacteriol, 2006. 188(4): p. 1211-7.
8. Chuang, C.H., et al., Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut, 2014. 63(5): p. 736-43.
9. Halder, P., et al., Shanghai Fever: A Fatal Form of Pseudomonas Aeruginosa Enteric Disease. Indian Pediatr, 2015. 52(10): p. 896-8.
10. Jayaseelan, S., D. Ramaswamy, and S. Dharmaraj, Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol, 2014. 30(4): p. 1159-68.
11. O'Malley, Y.Q., et al., Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2004. 287(1): p. L94-103.
12. Ostroff, R.M., A.I. Vasil, and M.L. Vasil, Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol, 1990. 172(10): p. 5915-23.
13. Lau, G.W., et al., Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun, 2004. 72(7): p. 4275-8.
14. Terada, L.S., et al., Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun, 1999. 67(5): p. 2371-6.
15. Barker, A.P., et al., A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol, 2004. 53(4): p. 1089-98.
16. Waksman, S.A. and H.B. Woodruff, The Soil as a Source of Microorganisms Antagonistic to Disease-Producing Bacteria. J Bacteriol, 1940. 40(4): p. 581-600.
17. Baron, S.S. and J.J. Rowe, Antibiotic action of pyocyanin. Antimicrob Agents Chemother, 1981. 20(6): p. 814-20.
18. Kerr, J.R., et al., Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol, 1999. 52(5): p. 385-7.
19. Ray, A., et al., Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett, 2015. 584: p. 23-7.
20. Pierson, L.S., 3rd, et al., Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett, 1995. 134(2-3): p. 299-307.
21. Mavrodi, D.V., et al., A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol, 1998. 180(9): p. 2541-8.
22. Mavrodi, D.V., et al., Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol, 2010. 76(3): p. 866-79.
23. Recinos, D.A., et al., Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A, 2012. 109(47): p. 19420-5.
24. Mavrodi, D.V., et al., Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol, 2001. 183(21): p. 6454-65.
25. Greenhagen, B.T., et al., Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry, 2008. 47(19): p. 5281-9.
26. Schauder, S. and B.L. Bassler, The languages of bacteria. Genes Dev, 2001. 15(12): p. 1468-80.
27. Liang, H., et al., Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa. FEMS Microbiol Lett, 2009. 293(2): p. 196-204.
28. Jimenez, P.N., et al., The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev, 2012. 76(1): p. 46-65.
29. Smith, R.S. and B.H. Iglewski, P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol, 2003. 6(1): p. 56-60.
30. Davies, D.G., et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998. 280(5361): p. 295-8.
31. Dietrich, L.E., et al., The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol, 2006. 61(5): p. 1308-21.
32. Diggle, S.P., S.A. Crusz, and M. Camara, Quorum sensing. Curr Biol, 2007. 17(21): p. R907-10.
33. Deziel, E., et al., Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A, 2004. 101(5): p. 1339-44.
34. Dubern, J.F. and S.P. Diggle, Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst, 2008. 4(9): p. 882-8.
35. Coleman, J.P., et al., Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol, 2008. 190(4): p. 1247-55.
36. Lu, J., et al., LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol, 2009. 143(1): p. 1-9.
37. Deziel, E., et al., The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol, 2005. 55(4): p. 998-1014.
38. Wade, D.S., et al., Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol, 2005. 187(13): p. 4372-80.
39. Kojic, M. and V. Venturi, Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol, 2001. 183(12): p. 3712-20.
40. Kojic, M., C. Aguilar, and V. Venturi, TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol, 2002. 184(8): p. 2324-30.
41. Liu, K., et al., Nuclear protein HMGN2 attenuates pyocyanin-induced oxidative stress via Nrf2 signaling and inhibits Pseudomonas aeruginosa internalization in A549 cells. Free Radic Biol Med, 2017. 108: p. 404-417.
42. Kang, Y., et al., The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology, 2008. 154(Pt 6): p. 1584-98.
43. Kang, Y., et al., The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol, 2009. 73(1): p. 120-36.
44. Shen, D.K., et al., PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infect Immun, 2006. 74(2): p. 1121-9.
45. Palumbo, S.A., Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. J Bacteriol, 1972. 111(2): p. 430-6.
46. Hellman, L.M. and M.G. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc, 2007. 2(8): p. 1849-61.
47. Djordjevic, D., M. Wiedmann, and L.A. McLandsborough, Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol, 2002. 68(6): p. 2950-8.
48. McClean, K.H., et al., Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997. 143 ( Pt 12): p. 3703-11.
49. Sokol, P.A., D.E. Ohman, and B.H. Iglewski, A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol, 1979. 9(4): p. 538-40.
50. Rashid, M.H. and A. Kornberg, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4885-90.
51. O'May, C. and N. Tufenkji, The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl Environ Microbiol, 2011. 77(9): p. 3061-7.
52. Suh, S.J., et al., Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol, 1999. 181(13): p. 3890-7.
53. Shrout, J.D., et al., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol, 2006. 62(5): p. 1264-77.
54. Fleiszig, S.M., et al., FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect Immun, 2001. 69(8): p. 4931-7.
55. Tomich, M., et al., Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun, 2002. 70(4): p. 1799-806.
56. Murray, T.S. and B.I. Kazmierczak, Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol, 2008. 190(8): p. 2700-8.
57. O'Toole, G., H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu Rev Microbiol, 2000. 54: p. 49-79.
58. Wells, G., S. Palethorpe, and E.C. Pesci, PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLOS ONE, 2017. 12(12): p. e0189331.
59. Schertzer, J.W., M.L. Boulette, and M. Whiteley, More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol, 2009. 17(5): p. 189-95.
60. McKnight, S.L., B.H. Iglewski, and E.C. Pesci, The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 2000. 182(10): p. 2702-8.
61. Gooderham, W.J., et al., Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J Bacteriol, 2008. 190(16): p. 5624-34.
62. Yahr, T.L., J. Goranson, and D.W. Frank, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol, 1996. 22(5): p. 991-1003.
63. Soscia, C., et al., Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol, 2007. 189(8): p. 3124-32.
64. Kohler, T., et al., Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol, 2000. 182(21): p. 5990-6.
65. Latifi, A., et al., A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol, 1996. 21(6): p. 1137-46.
66. Pesci, E.C., et al., Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 1997. 179(10): p. 3127-32.
67. Schuster, M. and E.P. Greenberg, A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol, 2006. 296(2-3): p. 73-81.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 轉錄因子PsrA在綠膿桿菌PAO1中調控群體感應的作用
2. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
3. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
4. 建構並鑑定創傷弧菌調控子LytR的突變株
5. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
6. DTriP-22抑制腸病毒71型之機制探討
7. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
8. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
9. 標的表現IgE的B淋巴細胞以調控IgE之生成
10. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
11. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
12. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
13. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
14. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
15. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
 
* *