|
1. Rumbaugh, K.P., J.A. Griswold, and A.N. Hamood, The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect, 2000. 2(14): p. 1721-31. 2. Barrios, C.C. and L.C. Oliver, A New Treatment Choice against Multi-Drug Resistant Pseudomonas aeruginosa: Doripenem. Journal of Bacteriology & Parasitology, 2014. 5(5). 3. de Bentzmann, S. and P. Plesiat, The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol, 2011. 13(7): p. 1655-65. 4. Holloway, B.W., Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol, 1955. 13(3): p. 572-81. 5. Meyer, J.M., Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol, 2000. 174(3): p. 135-42. 6. Reyes, E.A., et al., Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J Clin Microbiol, 1981. 13(3): p. 456-8. 7. Furukawa, S., S.L. Kuchma, and G.A. O'Toole, Keeping their options open: acute versus persistent infections. J Bacteriol, 2006. 188(4): p. 1211-7. 8. Chuang, C.H., et al., Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut, 2014. 63(5): p. 736-43. 9. Halder, P., et al., Shanghai Fever: A Fatal Form of Pseudomonas Aeruginosa Enteric Disease. Indian Pediatr, 2015. 52(10): p. 896-8. 10. Jayaseelan, S., D. Ramaswamy, and S. Dharmaraj, Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol, 2014. 30(4): p. 1159-68. 11. O'Malley, Y.Q., et al., Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2004. 287(1): p. L94-103. 12. Ostroff, R.M., A.I. Vasil, and M.L. Vasil, Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol, 1990. 172(10): p. 5915-23. 13. Lau, G.W., et al., Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun, 2004. 72(7): p. 4275-8. 14. Terada, L.S., et al., Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun, 1999. 67(5): p. 2371-6. 15. Barker, A.P., et al., A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol, 2004. 53(4): p. 1089-98. 16. Waksman, S.A. and H.B. Woodruff, The Soil as a Source of Microorganisms Antagonistic to Disease-Producing Bacteria. J Bacteriol, 1940. 40(4): p. 581-600. 17. Baron, S.S. and J.J. Rowe, Antibiotic action of pyocyanin. Antimicrob Agents Chemother, 1981. 20(6): p. 814-20. 18. Kerr, J.R., et al., Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol, 1999. 52(5): p. 385-7. 19. Ray, A., et al., Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett, 2015. 584: p. 23-7. 20. Pierson, L.S., 3rd, et al., Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett, 1995. 134(2-3): p. 299-307. 21. Mavrodi, D.V., et al., A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol, 1998. 180(9): p. 2541-8. 22. Mavrodi, D.V., et al., Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol, 2010. 76(3): p. 866-79. 23. Recinos, D.A., et al., Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A, 2012. 109(47): p. 19420-5. 24. Mavrodi, D.V., et al., Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol, 2001. 183(21): p. 6454-65. 25. Greenhagen, B.T., et al., Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry, 2008. 47(19): p. 5281-9. 26. Schauder, S. and B.L. Bassler, The languages of bacteria. Genes Dev, 2001. 15(12): p. 1468-80. 27. Liang, H., et al., Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa. FEMS Microbiol Lett, 2009. 293(2): p. 196-204. 28. Jimenez, P.N., et al., The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev, 2012. 76(1): p. 46-65. 29. Smith, R.S. and B.H. Iglewski, P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol, 2003. 6(1): p. 56-60. 30. Davies, D.G., et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998. 280(5361): p. 295-8. 31. Dietrich, L.E., et al., The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol, 2006. 61(5): p. 1308-21. 32. Diggle, S.P., S.A. Crusz, and M. Camara, Quorum sensing. Curr Biol, 2007. 17(21): p. R907-10. 33. Deziel, E., et al., Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A, 2004. 101(5): p. 1339-44. 34. Dubern, J.F. and S.P. Diggle, Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst, 2008. 4(9): p. 882-8. 35. Coleman, J.P., et al., Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol, 2008. 190(4): p. 1247-55. 36. Lu, J., et al., LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol, 2009. 143(1): p. 1-9. 37. Deziel, E., et al., The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol, 2005. 55(4): p. 998-1014. 38. Wade, D.S., et al., Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol, 2005. 187(13): p. 4372-80. 39. Kojic, M. and V. Venturi, Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol, 2001. 183(12): p. 3712-20. 40. Kojic, M., C. Aguilar, and V. Venturi, TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol, 2002. 184(8): p. 2324-30. 41. Liu, K., et al., Nuclear protein HMGN2 attenuates pyocyanin-induced oxidative stress via Nrf2 signaling and inhibits Pseudomonas aeruginosa internalization in A549 cells. Free Radic Biol Med, 2017. 108: p. 404-417. 42. Kang, Y., et al., The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology, 2008. 154(Pt 6): p. 1584-98. 43. Kang, Y., et al., The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol, 2009. 73(1): p. 120-36. 44. Shen, D.K., et al., PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infect Immun, 2006. 74(2): p. 1121-9. 45. Palumbo, S.A., Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. J Bacteriol, 1972. 111(2): p. 430-6. 46. Hellman, L.M. and M.G. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc, 2007. 2(8): p. 1849-61. 47. Djordjevic, D., M. Wiedmann, and L.A. McLandsborough, Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol, 2002. 68(6): p. 2950-8. 48. McClean, K.H., et al., Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997. 143 ( Pt 12): p. 3703-11. 49. Sokol, P.A., D.E. Ohman, and B.H. Iglewski, A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol, 1979. 9(4): p. 538-40. 50. Rashid, M.H. and A. Kornberg, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4885-90. 51. O'May, C. and N. Tufenkji, The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl Environ Microbiol, 2011. 77(9): p. 3061-7. 52. Suh, S.J., et al., Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol, 1999. 181(13): p. 3890-7. 53. Shrout, J.D., et al., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol, 2006. 62(5): p. 1264-77. 54. Fleiszig, S.M., et al., FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect Immun, 2001. 69(8): p. 4931-7. 55. Tomich, M., et al., Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun, 2002. 70(4): p. 1799-806. 56. Murray, T.S. and B.I. Kazmierczak, Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol, 2008. 190(8): p. 2700-8. 57. O'Toole, G., H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu Rev Microbiol, 2000. 54: p. 49-79. 58. Wells, G., S. Palethorpe, and E.C. Pesci, PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLOS ONE, 2017. 12(12): p. e0189331. 59. Schertzer, J.W., M.L. Boulette, and M. Whiteley, More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol, 2009. 17(5): p. 189-95. 60. McKnight, S.L., B.H. Iglewski, and E.C. Pesci, The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 2000. 182(10): p. 2702-8. 61. Gooderham, W.J., et al., Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J Bacteriol, 2008. 190(16): p. 5624-34. 62. Yahr, T.L., J. Goranson, and D.W. Frank, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol, 1996. 22(5): p. 991-1003. 63. Soscia, C., et al., Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol, 2007. 189(8): p. 3124-32. 64. Kohler, T., et al., Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol, 2000. 182(21): p. 5990-6. 65. Latifi, A., et al., A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol, 1996. 21(6): p. 1137-46. 66. Pesci, E.C., et al., Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 1997. 179(10): p. 3127-32. 67. Schuster, M. and E.P. Greenberg, A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol, 2006. 296(2-3): p. 73-81.
|