|
1. Brodbeck, D. et al. Molecular and biochemical characterization of the aaNAT1(Dat) locus in Drosophila melanogaster: differential expression of two gene products. DNA Cell Biol 17, 621-33 (1998). 2. Sloley, B.D. Metabolism of monoamines in invertebrates: the relative importance of monoamine oxidase in different phyla. Neurotoxicology 25, 175-83 (2004). 3. Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochemistry and Molecular Biology 40, 166-178 (2010). 4. Kramer, K.J. et al. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57, 385-392 (2001). 5. Osanai-Futahashi, M. et al. A visible dominant marker for insect transgenesis. Nature Communications 3(2012). 6. Brodbeck, D., et al. Molecular and Biochemical Characterization of the aaNATl (Dat) Locus in Drosophila melanogaster Differential Expression of Two Gene Products. DNA and cell biology 17, 621-633 (1998). 7. Dempsey, D.R. et al. Identification of an arylalkylamine N‐acyltransferase from Drosophila melanogaster that catalyzes the formation of long‐chain N‐acylserotonins. FEBS letters 588, 594-599 (2014). 8. Farrell, E.K. & Merkler, D.J. Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug discovery today 13, 558-568 (2008). 9. Dempsey, D.R. et al. Mechanistic and structural analysis of a Drosophila melanogaster enzyme, arylalkylamine N-acetyltransferase like 7, an enzyme that catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine. Biochemistry 54, 2644-2658 (2015). 10. Dempsey, D.R., Carpenter, A.-M., Ospina, S.R. & Merkler, D.J. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. Insect biochemistry and molecular biology 66, 1-12 (2015). 11. Amherd, R., Hintermann, E., Walz, D., Affolter, M. & Meyer, U.A. Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA and Cell Biology 19, 697-705 (2000). 12. Dempsey, D.R. et al. Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine. Sci Rep 7, 13432 (2017). 13. Dempsey, D.R. et al. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 53, 7777-7793 (2014). 14. Kossel, A. Über das Agmatin. Hoppe-Seyler s Zeitschrift für physiologische Chemie 66, 257-261 (1910). 15. Piletz, J.E. et al. Agmatine: clinical applications after 100 years in translation. Drug discovery today 18, 880-893 (2013). 16. Galea, E., Regunathan, S., Eliopoulos, V. & FEINSTEIN, D.L. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochemical Journal 316, 247-249 (1996). 17. Gadkari, T.V., Cortes, N., Madrasi, K., Tsoukias, N.M. & Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 35, 65-71 (2013). 18. Marc, R.E. Mapping glutamatergic drive in the vertebrate retina with a channel‐permeant organic cation. Journal of Comparative Neurology 407, 47-64 (1999). 19. Mistry, S.K. et al. Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virus. American Journal of Physiology-Gastrointestinal and Liver Physiology 282, G375-G381 (2002). 20. Dallmann, K. et al. Human agmatinase is diminished in the clear cell type of renal cell carcinoma. International journal of cancer 108, 342-347 (2004). 21. Morris, S.M. Vertebrate agmatinases: what role do they play in agmatine catabolism ANNALS-NEW YORK ACADEMY OF SCIENCES, 30-33 (2003). 22. Satriano, J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines. Amino acids 26, 321-329 (2004). 23. Uzbay, T.I. The pharmacological importance of agmatine in the brain. Neuroscience & Biobehavioral Reviews 36, 502-519 (2012). 24. Moncada, S. Mechanisms of disease-the l-arginine nitric-oxide pathway. N Engl J Med 329, 2002-2012 (1993). 25. Moinard, C., Cynober, L. & de Bandt, J.-P. Polyamines: metabolism and implications in human diseases. Clinical nutrition 24, 184-197 (2005). 26. Hickman, A.B., Klein, D.C. & Dyda, F. Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell 3, 23-32 (1999). 27. Hickman, A.B., Namboodiri, M.A.A., Klein, D.C. & Dyda, F. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 angstrom resolution with a bisubstrate analog. Cell 97, 361-369 (1999). 28. Cheng, K.C., Liao, J.N. & Lyu, P.C. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. Biochem J 446, 395-404 (2012). 29. Han, Q., Robinson, H., Ding, H.Z., Christensen, B.M. & Li, J.Y. Evolution of insect arylalkylamine N-acetyltransferases: Structural evidence from the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 109, 11669-11674 (2012). 30. Vetting, M.W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433, 212-26 (2005). 31. Dyda, F., Klein, D.C. & Hickman, A.B. GCN5-related N-acetyltransferases: A structural overview. Annual Review of Biophysics and Biomolecular Structure 29, 81-103 (2000). 32. Salah Ud-Din, A.I., Tikhomirova, A. & Roujeinikova, A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 17(2016). 33. Vetting, M.W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Archives of biochemistry and biophysics 433, 212-226 (2005). 34. Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439-449 (1998). 35. Pavlicek, J. et al. Evidence that proline focuses movement of the floppy loop of arylalkylamine N-acetyltransferase (EC 2.3. 1.87). Journal of Biological Chemistry 283, 14552-14558 (2008). 36. Ellman, G.L. Tissue sulfhydryl groups. Archives of biochemistry and biophysics 82, 70-77 (1959). 37. Collier, H.B. A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate. Analytical biochemistry 56, 310 (1973). 38. Riddles, P.W., Blakeley, R.L. & Zerner, B. Reassessment of Ellman's reagent. in Methods in enzymology, Vol. 91 49-60 (Elsevier, 1983). 39. Riener, C.K., Kada, G. & Gruber, H.J. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4, 4′-dithiodipyridine. Analytical and bioanalytical chemistry 373, 266-276 (2002). 40. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical biochemistry 179, 131-137 (1989). 41. Saponaro, A. Isothermal Titration Calorimetry: A Biophysical Method to Characterize the Interaction between Label-free Biomolecules in Solution. Bio-protocol 8(2018). 42. Duhovny, D., Nussinov, R. & Wolfson, H.J. Efficient unbound docking of rigid molecules. in International workshop on algorithms in bioinformatics 185-200 (Springer, 2002). 43. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research 33, W363-W367 (2005). 44. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering, design and selection 8, 127-134 (1995). 45. Laskowski, R.A. & Swindells, M.B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. (ACS Publications, 2011). 46. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. (2015). 47. Manavalan, P. & Johnson Jr, W.C. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical biochemistry 167, 76-85 (1987). 48. Rodger, A. & Nordén, B. Circular dichroism and linear dichroism, (Oxford University Press, USA, 1997). 49. Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A 95, 12088-93 (1998).
|