帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖彥智
作者(外文):Liao, Yen-Chih
論文名稱(中文):SOX2和TGF-β訊息對子宮內膜癌ESR1異質性的影響
論文名稱(外文):The crosstalk of SOX2 and TGF-β signaling on ESR1 heterogeneity of endometrial carcinoma
指導教授(中文):周裕珽
指導教授(外文):Chou, Yu-Ting
口試委員(中文):潘憲棠
溫國璋
宋碧琳
口試委員(外文):Pan, Shien-Tung
Wen, Kuo-Chang
Sung, Pi-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:106080561
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:36
中文關鍵詞:子宮內膜癌雌激素受體乙型轉化生長因子ESR1降解劑荷爾蒙療法氟維司群磷酸酯酶與張力蛋白同源物CDK4/6抑制劑癌細胞塑性
外文關鍵詞:Endometrial carcinomaSOX2ESR1TGF-βHormone TherapyfulvestrantPTENCDK4/6 inhibitor therapypalbociclibIshikawaIshikawa-02Cancer cell plasticityPTEN loss mutation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
子宮內膜癌為已開發國家中最常見的婦科惡性腫瘤之一。目前已知腫瘤中ESR1的表現可以用於預測患者的存活率;然而,幹細胞因子如何影響子宮內膜癌的ESR1表現和對ESR1的標靶治療的反應仍然未知。本研究中,我們發現在子宮內膜癌中,幹細胞因子SOX2與ESR1之表現量呈負相關。更甚者,我們也發現高SOX2表現的患者具較差的存活率,而ESR1高表現的患者具較好的存活率,且兩者可同時用於預測子宮內膜癌患者之存活率。qPCR和immunoblot的結果顯示,子宮內膜癌細胞Ishikawa (ESR1陽性)及其後代Ishikawa-02 (ESR1陰性)除了分別具有較高和較低的SOX2表現外,兩者在細胞形態上具有明顯的差異。另外,我們也發現施予TGF-β會抑制SOX2的表現並增加ESR1的表現,因而誘導癌細胞塑性與細胞型態的改變。藉由clonogenic analysis,我們發現雖然Ishikawa、Ishikawa-02及其後代均對ESR1降解劑—Fulvestrant具有抗性,SOX2表現量較低的細胞卻會對CDK4/6抑制劑—Palbociclib較敏感。總括而言,我們發現了SOX2的表現量具有調控癌細胞可塑性的能力,而TGF-β刺激調控則對ESR1的表現量及子宮內膜癌細胞對標靶治療的敏感性有所影響。
Endometrial carcinoma is one of the most common gynecological cancer malignancies in developed countries, and ESR1 expression in tumors predicts survival outcome in patients. However, how stemness factors affect ESR1 expression and responses toward ESR1 targeted therapy in endometrial carcinoma is unknown. Here, we report that SOX2 stemness factor shows a negative expression pattern with ESR1 in endometrial carcinoma, and SOX2 and ESR1 expression predict a poor and good survival outcome, respectively, in patients. qPCR and immunoblotting analysis showed that endometrial carcinoma cell Ishikawa (ESR1-positive) and its descendent Ishikawa-02 (ESR1-negative) harbor low and high SOX2 expression, respectively, and display distinct morphology. We found that TGF-β stimulation downregulates SOX2, while upregulating ESR1 expression, and induces cancer cell plasticity with altered phenotypical changes in endometrial cancer cells. Clonogenic analysis showed that Ishikawa, Ishikawa-02, and their descendants are all resistant to fulvestrant, an ESR1 degrader, whereas SOX2-low cells are more sensitive to palbociclib, a CDK4/6 inhibitor. Our findings indicate the cancer cell plasticity mediated by SOX2 status and TGF-β stimulation affects ESR1 expression and responses toward targeted therapy in endometrial carcinoma.
目錄

Abstract ..........................................................................................................1

中文摘要............................................................................................................2

致謝...................................................................................................................3

Introduction.....................................................................................................7

Endometrial carcinoma..................................................................................7

SRY (sex determining region Y)-box 2 (SOX2) ............................................7

Estrogen receptor-1 (ESR1) ..........................................................................8

Hormone Therapy...........................................................................................9

Phosphatase and tensin homolog (PTEN) ................................................10

CDK4/6 inhibitor therapy..............................................................................10

Materials and Methods.................................................................................12

Cell Culture...................................................................................................12

Lentiviral Infection.......................................................................................12

Quantitative Real-Time PCR(Q-PCR) .........................................................13

Flow cytometry.............................................................................................13

Immunoblotting............................................................................................13

Clonogenic assay.........................................................................................14

Statistical Analysis.......................................................................................14

Result.............................................................................................................15

Cancer cell plasticity affects SOX2 and ESR1 expression pattern in endometrial carcinoma…….........................................................................15

Effect of TGF-β stimulation on SOX2 and ESR1 expression pattern in endometrial carcinoma……………………………….....................................15

SOX2 negatively regulates ESR1 expression............................................16

SOX2 and ESR1 as prognostic markers associated with survival in endometrial carcinoma patients.................................................................17

SOX2 status and TGF-β stimulation affect the effectiveness of targeted therapies………………………………............................................................17

Discussion....................................................................................................19

Figures..........................................................................................................20

References....................................................................................................30
1. Siegel, R. L., Miller, K. D., and Jemal, A. (2019) Cancer statistics, 2019, CA: a cancer journal for clinicians 69, 7-34.
2. Fanning, J., Evans, M., Peters, A., Samuel, M., Harmon, E., and Bates, J. (1989) Endometrial adenocarcinoma histologic subtypes: Clinical and pathologic profile: Gynecol. Oncol.; 32/3 (288–291)/1989, Maturitas 11, 247.
3. Ambros, R. A., and Kurman, R. J. (1992) Combined assessment of vascular and myometrial invasion as a model to predict prognosis in stage I endometrioid adenocarcinoma of the uterine corpus, Cancer 69, 1424-1431.
4. Hernandez, E. (1993) Pathological findings and prognosis from uterine malignancy, Current opinion in obstetrics & gynecology 5, 480-485.
5. Bokhman, J. V. (1983) Two pathogenetic types of endometrial carcinoma, Gynecologic oncology 15, 10-17.
6. Slomovitz, B. M., Burke, T. W., Eifel, P. J., Ramondetta, L. M., Silva, E. G., Jhingran, A., Oh, J. C., Atkinson, E. N., Broaddus, R. R., and Gershenson, D. M. (2003) Uterine papillary serous carcinoma (UPSC): a single institution review of 129 cases, Gynecologic oncology 91, 463-469.
7. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., and Jenner, R. G. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells, cell 122, 947-956.
8. Boiani, M., and Schöler, H. R. (2005) Developmental cell biology: Regulatory networks in embryo-derived pluripotent stem cells, Nature reviews Molecular cell biology 6, 872.
9. Santini, R., Pietrobono, S., Pandolfi, S., Montagnani, V., D'amico, M., Penachioni, J., Vinci, M., Borgognoni, L., and Stecca, B. (2014) SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells, Oncogene 33, 4697.
10. Xiang, R., Liao, D., Cheng, T., Zhou, H., Shi, Q., Chuang, T., Markowitz, D., Reisfeld, R., and Luo, Y. (2011) Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer, British journal of cancer 104, 1410.
11. Boumahdi, S., Driessens, G., Lapouge, G., Rorive, S., Nassar, D., Le Mercier, M., Delatte, B., Caauwe, A., Lenglez, S., and Nkusi, E. (2014) SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma, Nature 511, 246.
12. Vanner, R. J., Remke, M., Gallo, M., Selvadurai, H. J., Coutinho, F., Lee, L., Kushida, M., Head, R., Morrissy, S., and Zhu, X. (2014) Quiescent Sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma, Cancer cell 26, 33-47.
13. Lin, F., Lin, P., Zhao, D., Chen, Y., Xiao, L., Qin, W., Li, D., Chen, H., Zhao, B., and Zou, H. (2012) S ox2 targets cyclin E, p27 and survivin to regulate androgen‐independent human prostate cancer cell proliferation and apoptosis, Cell proliferation 45, 207-216.
14. Ishiguro, T., Sato, A., Ohata, H., Sakai, H., Nakagama, H., and Okamoto, K. (2012) Differential expression of nanog1 and nanogp8 in colon cancer cells, Biochemical and biophysical research communications 418, 199-204.
15. Oppel, F., Müller, N., Schackert, G., Hendruschk, S., Martin, D., Geiger, K. D., and Temme, A. (2011) SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells, Molecular cancer 10, 137.
16. Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., and Zhang, Y. (2008) The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer, Journal of Biological Chemistry 283, 17969-17978.
17. Herreros-Villanueva, M., Zhang, J., Koenig, A., Abel, E., Smyrk, T. C., Bamlet, W., De Narvajas, A. A., Gomez, T., Simeone, D., and Bujanda, L. (2013) SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells, Oncogenesis 2, e61.
18. Jia, X., Li, X., Xu, Y., Zhang, S., Mou, W., Liu, Y., Liu, Y., Lv, D., Liu, C.-H., and Tan, X. (2011) SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell, Journal of molecular cell biology 3, 230-238.
19. Hütz, K., Mejías-Luque, R., Farsakova, K., Ogris, M., Krebs, S., Anton, M., Vieth, M., Schüller, U., Schneider, M. R., and Blum, H. (2013) The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells, Carcinogenesis 35, 942-950.
20. Basu-Roy, U., Seo, E., Ramanathapuram, L., Rapp, T. B., Perry, J. A., Orkin, S. H., Mansukhani, A., and Basilico, C. (2012) Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas, Oncogene 31, 2270.
21. Ren, C., Ren, T., Yang, K., Wang, S., Bao, X., Zhang, F., and Guo, W. (2016) Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewing’s sarcoma through the PI3K/Akt pathway, Journal of Experimental & Clinical Cancer Research 35, 44.
22. Ishiguro, T., Sato, A., Ohata, H., Ikarashi, Y., Takahashi, R.-u., Ochiya, T., Yoshida, M., Tsuda, H., Onda, T., and Kato, T. (2016) Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity, Cancer research 76, 150-160.
23. Yamawaki, K., Ishiguro, T., Mori, Y., Yoshihara, K., Suda, K., Tamura, R., Yamaguchi, M., Sekine, M., Kashima, K., and Higuchi, M. (2017) Sox2‐dependent inhibition of p21 is associated with poor prognosis of endometrial cancer, Cancer science 108, 632-640.
24. Li, X., Huang, J., Yi, P., Bambara, R. A., Hilf, R., and Muyan, M. (2004) Single-chain estrogen receptors (ERs) reveal that the ERα/β heterodimer emulates functions of the ERα dimer in genomic estrogen signaling pathways, Molecular and cellular biology 24, 7681-7694.
25. Thomas, C., and Gustafsson, J.-Å. (2011) The different roles of ER subtypes in cancer biology and therapy, Nature Reviews Cancer 11, 597.
26. Srijaipracharoen, S., Tangjitgamol, S., Tanvanich, S., Manusirivithaya, S., Khunnarong, J., Thavaramara, T., Leelahakorn, S., and Pataradool, K. (2010) Expression of ER, PR, and Her-2/neu in endometrial cancer: a clinicopathological study, Asian Pac J Cancer Prev 11, 215-220.
27. Köbel, M., Atenafu, E. G., Rambau, P. F., Ferguson, S. E., Nelson, G. S., Ho, T., Panzarella, T., McAlpine, J. N., Gilks, C. B., and Clarke, B. A. (2016) Progesterone receptor expression is associated with longer overall survival within high-grade histotypes of endometrial carcinoma: A Canadian high risk endometrial cancer consortium (CHREC) study, Gynecologic oncology 141, 559-563.
28. Engelsen, I. B., Stefansson, I. M., Akslen, L. A., and Salvesen, H. B. (2008) GATA3 expression in estrogen receptor α-negative endometrial carcinomas identifies aggressive tumors with high proliferation and poor patient survival, American journal of obstetrics and gynecology 199, 543. e541-543. e547.
29. Jongen, V., Briët, J., de Jong, R., ten Hoor, K., Boezen, M., van der Zee, A., Nijman, H., and Hollema, H. (2009) Expression of estrogen receptor-alpha and-beta and progesterone receptor-A and-B in a large cohort of patients with endometrioid endometrial cancer, Gynecologic oncology 112, 537-542.
30. Russo, I. H., and Russo, J. (1998) Role of hormones in mammary cancer initiation and progression, Journal of mammary gland biology and neoplasia 3, 49-61.
31. Key, T. J. (1995) Hormones and cancer in humans, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 333, 59-67.
32. Beato, M. (1989) Gene regulation by steroid hormones, Cell 56, 335-344.
33. Patel, H. K., and Bihani, T. (2018) Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment, Pharmacology & therapeutics 186, 1-24.
34. Guo, S., Zhang, C., Bratton, M., Mottamal, M., Liu, J., Ma, P., Zheng, S., Zhong, Q., Yang, L., and Wiese, T. E. (2018) ZB716, a steroidal selective estrogen receptor degrader (SERD), is orally efficacious in blocking tumor growth in mouse xenograft models, Oncotarget 9, 6924.
35. Lee, C. I., Goodwin, A., and Wilcken, N. (2017) Fulvestrant for hormone‐sensitive metastatic breast cancer, Cochrane Database of Systematic Reviews.
36. Stambolic, V., Suzuki, A., De La Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P., and Mak, T. W. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN, Cell 95, 29-39.
37. Hollander, M. C., Blumenthal, G. M., and Dennis, P. A. (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models, Nature Reviews Cancer 11, 289.
38. Amant, F., Moerman, P., Neven, P., Timmerman, D., Van Limbergen, E., and Vergote, I. (2005) Endometrial cancer, The Lancet 366, 491-505.
39. Mutter, G. L., Lin, M.-C., Fitzgerald, J. T., Kum, J. B., Baak, J. P., Lees, J. A., Weng, L.-P., and Eng, C. (2000) Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers, Journal of the National Cancer Institute 92, 924-930.
40. Risinger, J. I., Hayes, A. K., Berchuck, A., and Barrett, J. C. (1997) PTEN/MMAC1 mutations in endometrial cancers, Cancer research 57, 4736-4738.
41. Tashiro, H., Blazes, M. S., Wu, R., Cho, K. R., Bose, S., Wang, S. I., Li, J., Parsons, R., and Ellenson, L. H. (1997) Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies, Cancer research 57, 3935-3940.
42. Mirantes, C., Eritja, N., Dosil, M. A., Santacana, M., Pallares, J., Gatius, S., Bergadà, L., Maiques, O., Matias-Guiu, X., and Dolcet, X. (2013) An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias, Disease models & mechanisms 6, 710-720.
43. Casimiro, M. C., Velasco-Velázquez, M., Aguirre-Alvarado, C., and Pestell, R. G. (2014) Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present, Expert opinion on investigational drugs 23, 295-304.
44. Pestell, R. G. (2013) New roles of cyclin D1, The American journal of pathology 183, 3-9.
45. Malumbres, M., and Barbacid, M. (2007) Cell cycle kinases in cancer, Current opinion in genetics & development 17, 60-65.
46. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, cell 144, 646-674.
47. Finn, R. S., Aleshin, A., and Slamon, D. J. (2016) Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers, Breast Cancer Research 18, 17.
48. Choo, J. R.-E., and Lee, S.-C. (2018) CDK4-6 inhibitors in breast cancer: current status and future development, Expert opinion on drug metabolism & toxicology 14, 1123-1138.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *