帳號:guest(3.143.0.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐堉禎
作者(外文):Hsu, Yu-Jhen
論文名稱(中文):乳腺腺泡生成時,TGFBR3的表現對細胞命運及細胞型態影響之研究
論文名稱(外文):Molecular analysis of TGFBR3 expression in mammary acinar morphogenesis and its effects on the cell fate and the cell phenotypes
指導教授(中文):王群超
指導教授(外文):Wang, Chun-Chao
口試委員(中文):謝文萍
劉繼賢
口試委員(外文):Hsieh, Wen-Ping
Liu, Chi-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080547
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:乙型轉化生長因子第三型受體乙型轉化生長因子活化轉錄因子失巢凋亡異質性三陰性乳癌上皮間質轉移
外文關鍵詞:TGFBR3TGFβATF4AnoikisheterogeneityTNBCEMT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
三陰性乳癌的特徵是易於生長、轉移,具有高異質性、高復發性及高抗藥性,基因調控錯誤會重塑細胞的命運並誘導腫瘤生長。在此篇論文,我們利用MCF-10A作為研究材料,探討乙型轉化生長因子第三型受體(TGFBR3)在乳腺腺泡形成過程中,對其異質性與細胞生死抉擇產生的影響。TGFBR3幫助接收受質,是TGFβ訊號傳遞途徑中的一員。實驗結果顯示,當細胞脫離細胞外間質,TGFBR3會被大量表現,BCL2相關蛋白的表現量會被調節,最後導致細胞死亡。抑制TGFBR3則可以使細胞壓力相關基因表現量上升,使細胞凋亡的現象受到抑制。顯示TGFBR3的表現能夠影響細胞的生死抉擇。TGFBR3和細胞壓力之間的關係對於細胞命運的影響讓我們從新看待乳腺形成的過程,或許可以提供治療乳癌的新策略。
Triple-negative breast cancer is characterized by high proliferation, metastases, heterogeneity incidence of relapse, and drug resistance. Misregulation of gene expression re-programs cell fate and promotes tumor progression. Here, we target transforming growth factor beta receptor III (TGFBR3) and use MCF-10A as a material to investigate the life-death decision in mammary acinar morphogenesis. The results suggest that TGFBR3 expression is induced while cells detach from extracellular matrix (ECM), which is critical for cell survival. In this stressful situation, epithelial cells undergo apoptosis through BCL2 pathway during ECM detachment. Knockdown of TGFBR3 lead to upregulation of cell stress genes, resulting in apoptosis inhibition. The TGFBR3-stress response genes axis for cell fate determination provides a new insight of mammary gland morphogenesis and might pave the way for new therapeutic strategies.
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 三陰性乳癌 1
1-2 MCF-10A細胞株 3
1-3 MCF-10A乳腺腺泡的細胞間異質性 9
1-4 乙型轉化生長因子第三型受體(TGFBR3) 11
1-5 上皮間質轉換 13
第二章 實驗材料與方法 15
2-1細胞株 15
2-2質體 15
2-3反轉錄定量聚合酶連鎖反應 (RT-qPCR) 15
2-4西方墨點法(Western blotting) 17
2-5懸浮實驗 18
2-6統計方法 21
第三章 實驗結果 22
3-1 當細胞脫離ECM會造成細胞表現TGFBR3,將促使細胞凋亡 22
3-1-1 結論 22
3-1-2當乳腺腺泡形成時,TGFBR3被大量表現在內層細胞中。 22
3-1-3 TGFBR3被表現在無法貼附ECM的細胞中 24
3-1-4 懸浮培養細胞時,抑制TGFBR3可減緩細胞凋亡 26
3-1-5懸浮培養細胞會影響BCL2相關蛋白的mRNA表現量,抑制TGFBR3可以減緩此情況 29
3-1-6 TGFBR3抑制ATF4表現而導致細胞凋亡 42
3-2 TGFBR3經由SMADs讓乳腺上皮細胞進行上皮間質轉移 46
3-2-1 結論 46
3-2-2 TGFBR3讓細胞趨於表現間質細胞型態,而非上皮細胞型態 47
3-2-3 TGFBR3將TGFβ訊號引流至磷酸化SMAD1/5而非磷酸化SMAD2/3 50
第四章 討論 54
第五章 參考文獻 56
1. Aysola, K. et al. Triple Negative Breast Cancer - An Overview. Hereditary Genet 2013, 001 (2013).
2. Podo, F. et al. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4, 209-229 (2010).
3. Sharma, S., Barry, M., Gallagher, D.J., Kell, M. & Sacchini, V. An overview of triple negative breast cancer for surgical oncologists. Surgical Oncology 24, 276-283 (2015).
4. Lin, C. et al. Triple negative breast carcinoma is a prognostic factor in Taiwanese women. BMC Cancer 9, 192 (2009).
5. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256-268 (2003).
6. Frantz, C., Stewart, K.M. & Weaver, V.M. The extracellular matrix at a glance. Journal of Cell Science 123, 4195 (2010).
7. Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 104, 3787-3792 (2007).
8. Liotta, L.A. & Kohn, E. Cancer and the homeless cell. Nature 430, 973-974 (2004).
9. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation 25, 486-541 (2018).
10. Green, D.R. & Llambi, F. Cell Death Signaling. Cold Spring Harbor perspectives in biology 7, a006080.
11. Reginato, M.J. et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biology 5, 733-740 (2003).
12. Miranti, C.K. & Brugge, J.S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology 4, E83 (2002).
13. Wang, C.-C., Bajikar, S.S., Jamal, L., Atkins, K.A. & Janes, K.A. A time-and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nature cell biology 16, 345 (2014).
14. Kapuscinski, J. DAPI: a DNA-Specific Fluorescent Probe. Biotechnic & Histochemistry 70, 220-233 (1995).
15. Arpin, M., Chirivino, D., Naba, A. & Zwaenepoel, I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adhesion & Migration 5, 199-206 (2011).
16. Fiévet, B., Louvard, D. & Arpin, M. ERM proteins in epithelial cell organization and functions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773, 653-660 (2007).
17. Fievet, B.T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. The Journal of Cell Biology 164, 653 (2004).
18. Assémat, E., Bazellières, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, 614-630 (2008).
19. Tellez-Gabriel M, H.M., Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Theranostics 9(16), 4580-4594 (2019).
20. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214-218 (2013).
21. Martinez, P. et al. Parallel evolution of tumour subclones mimics diversity between tumours. The Journal of Pathology 230, 356-364 (2013).
22. Hsieh, J.J. et al. Overcome tumor heterogeneity-imposed therapeutic barriers through convergent genomic biomarker discovery: A braided cancer river model of kidney cancer. Semin Cell Dev Biol 64, 98-106 (2017).
23. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 366, 883-892 (2012).
24. Allison KH, S.G. Heterogeneity and Cancer. Oncology 28(9), 772-778 (2014).
25. Wilting, R.H. & Dannenberg, J.-H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates 15, 21-38 (2012).
26. Kumar, N. et al. Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations. Sci Rep 9, 10845-10845 (2019).
27. Park, J.H., Ahn, J.-H. & Kim, S.-B. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 3, e000357-e000357 (2018).
28. Vander Ark, A., Cao, J. & Li, X. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling 52, 112-120 (2018).
29. Zhang, Y. & Derynck, R. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends in Cell Biology 9, 274-279 (1999).
30. Andres, J.L., Stanley, K., Cheifetz, S. & Massagué, J. Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. The Journal of cell biology 109, 3137-3145 (1989).
31. Andres, J.L., DeFalcis, D., Noda, M. & Massagué, J. Binding of two growth factor families to separate domains of the proteoglycan betaglycan. Journal of Biological Chemistry 267, 5927-5930 (1992).
32. Lin, H.Y. et al. The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)-β Receptor: A HETEROGENEOUSLY GLYCOSYLATED PROTEIN WITH HIGH AFFINITY AND SELECTIVITY FOR TGF-β LIGANDS. Journal of Biological Chemistry 270, 2747-2754 (1995).
33. Margulis, V. et al. Type III Transforming Growth Factor-β (TGF-β) Receptor Mediates Apoptosis in Renal Cell Carcinoma Independent of the Canonical TGF-β Signaling Pathway. Clinical Cancer Research 14, 5722-5730 (2008).
34. Blobe, G.C. et al. Functional Roles for the Cytoplasmic Domain of the Type III Transforming Growth Factor β Receptor in Regulating Transforming Growth Factor β Signaling. Journal of Biological Chemistry 276, 24627-24637 (2001).
35. Nishida, J., Miyazono, K. & Ehata, S. Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms. Oncogene (2018).
36. Eickelberg, O., Centrella, M., Reiss, M., Kashgarian, M. & Wells, R.G. Betaglycan Inhibits TGF-β Signaling by Preventing Type I-Type II Receptor Complex Formation: GLYCOSAMINOGLYCAN MODIFICATIONS ALTER BETAGLYCAN FUNCTION. Journal of Biological Chemistry 277, 823-829 (2002).
37. Massagué, J. How cells read TGF-β signals. Nature Reviews Molecular Cell Biology 1, 169 (2000).
38. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119, 1420-1428 (2009).
39. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nature Cell Biology 16, 488 (2014).
40. Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442 (2002).
41. Janes, K.A., Wang, C.-C., Holmberg, K.J., Cabral, K. & Brugge, J.S. Identifying single-cell molecular programs by stochastic profiling. Nat Methods 7, 311-317 (2010).
42. Qu, Y. et al. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLOS ONE 10, e0131285 (2015).
43. Moffat, J. et al. A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell 124, 1283-1298 (2006).
44. Higuchi, R., Dollinger, G., Walsh, P.S. & Griffith, R. Simultaneous Amplification and Detection of Specific DNA Sequences. Bio/Technology 10, 413-417 (1992).
45. Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25, 169-193 (2000).
46. Rio, D.C., Ares, M., Hannon, G.J. & Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent). Cold Spring Harbor Protocols 2010, pdb.prot5439 (2010).
47. Rodríguez, A., Rodríguez, M., Córdoba, J.J. & Andrade, M.J. Design of Primers and Probes for Quantitative Real-Time PCR Methods, in PCR Primer Design. (ed. C. Basu) 31-56 (Springer New York, New York, NY; 2015).
48. Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic acids research 32, e103-e103 (2004).
49. PCR troubleshooting and optimization : the essential guide. (Caister Academic, Norfolk, U.K.; 2011).
50. Rogers-Broadway, K.-R. & Karteris, E. Amplification efficiency and thermal stability of qPCR instrumentation: Current landscape and future perspectives. Exp Ther Med 10, 1261-1264 (2015).
51. Kubista, M. et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine 27, 95-125 (2006).
52. Hirano, S. Western Blot Analysis, in Nanotoxicity: Methods and Protocols. (ed. J. Reineke) 87-97 (Humana Press, Totowa, NJ; 2012).
53. Kurien, B.T. & Scofield, R.H. Introduction to Protein Blotting, in Protein Blotting and Detection: Methods and Protocols. (eds. B.T. Kurien & R.H. Scofield) 9-22 (Humana Press, Totowa, NJ; 2009).
54. Kurien, B.T., Dorri, Y., Dillon, S., Dsouza, A. & Scofield, R.H. An Overview of Western Blotting for Determining Antibody Specificities for Immunohistochemistry, in Signal Transduction Immunohistochemistry: Methods and Protocols. (ed. A.E. Kalyuzhny) 55-67 (Humana Press, Totowa, NJ; 2011).
55. Kurien, B.T. & Scofield, R.H. Western blotting. Methods 38, 283-293 (2006).
56. Kurien, B.T. & Scofield, R.H. Western Blotting: An Introduction, in Western Blotting: Methods and Protocols. (eds. B.T. Kurien & R.H. Scofield) 17-30 (Springer New York, New York, NY; 2015).
57. Smith, B.J. SDS Polyacrylamide Gel Electrophoresis of Proteins, in Basic Protein and Peptide Protocols. (ed. J.M. Walker) 23-34 (Humana Press, Totowa, NJ; 1994).
58. Mahmood, T. & Yang, P.-C. Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4, 429-434 (2012).
59. Ye, F. et al. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA). Biomicrofluidics 9, 044106-044106 (2015).
60. Vachon, P.H. Methods for Assessing Apoptosis and Anoikis in Normal Intestine/Colon and Colorectal Cancer, in Colorectal Cancer: Methods and Protocols. (ed. J.-F. Beaulieu) 99-137 (Springer New York, New York, NY; 2018).
61. Katt, M.E., Placone, A.L., Wong, A.D., Xu, Z.S. & Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4, 12-12 (2016).
62. Wichterle, O. & LÍM, D. Hydrophilic Gels for Biological Use. Nature 185, 117-118 (1960).
63. Nishimura, S.-n. et al. Photocleavable Peptide–Poly(2-hydroxyethyl methacrylate) Hybrid Graft Copolymer via Postpolymerization Modification by Click Chemistry To Modulate the Cell Affinities of 2D and 3D Materials. ACS Applied Materials & Interfaces 11, 24577-24587 (2019).
64. Morales, J. et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24, 15-28 (2014).
65. Herceg, Z. & Wang, Z.-Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 477, 97-110 (2001).
66. Kale, J., Osterlund, E.J. & Andrews, D.W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death And Differentiation 25, 65 (2017).
67. Parsons, M.J. & Green, D.R. Mitochondria in cell death. Essays In Biochemistry 47, 99 (2010).
68. Estaquier, J., Vallette, F., Vayssiere, J.-L. & Mignotte, B. The Mitochondrial Pathways of Apoptosis, in Advances in Mitochondrial Medicine. (eds. R. Scatena, P. Bottoni & B. Giardina) 157-183 (Springer Netherlands, Dordrecht; 2012).
69. Muñoz-Pinedo, C. Signaling Pathways that Regulate Life and Cell Death: Evolution of Apoptosis in the Context of Self-Defense, in Self and Nonself. (ed. C. López-Larrea) 124-143 (Springer US, New York, NY; 2012).
70. Tait, S.W.G. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology 11, 621 (2010).
71. Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 9, 47 (2008).
72. Lomonosova, E. & Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 Suppl 1, S2-S19 (2008).
73. Kuwana, T. et al. Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane. Cell 111, 331-342 (2002).
74. Piñon, J.D., Labi, V., Egle, A. & Villunger, A. Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27, S41 (2009).
75. Guan, B.-J. et al. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem 289, 12593-12611 (2014).
76. Magne, L. et al. ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. Journal of Hepatology 54, 729-737 (2011).
77. Tameire, F. et al. ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nature Cell Biology 21, 889-899 (2019).
78. Baird, T.D. & Wek, R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3, 307-321 (2012).
79. Donnelly, N., Gorman, A.M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cellular and Molecular Life Sciences 70, 3493-3511 (2013).
80. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO reports 17, 1374-1395 (2016).
81. González-González, A. et al. Activating Transcription Factor 4 Modulates TGFβ-Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling. Clinical Cancer Research 24, 5697 (2018).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *