|
1. Aysola, K. et al. Triple Negative Breast Cancer - An Overview. Hereditary Genet 2013, 001 (2013). 2. Podo, F. et al. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4, 209-229 (2010). 3. Sharma, S., Barry, M., Gallagher, D.J., Kell, M. & Sacchini, V. An overview of triple negative breast cancer for surgical oncologists. Surgical Oncology 24, 276-283 (2015). 4. Lin, C. et al. Triple negative breast carcinoma is a prognostic factor in Taiwanese women. BMC Cancer 9, 192 (2009). 5. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256-268 (2003). 6. Frantz, C., Stewart, K.M. & Weaver, V.M. The extracellular matrix at a glance. Journal of Cell Science 123, 4195 (2010). 7. Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 104, 3787-3792 (2007). 8. Liotta, L.A. & Kohn, E. Cancer and the homeless cell. Nature 430, 973-974 (2004). 9. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation 25, 486-541 (2018). 10. Green, D.R. & Llambi, F. Cell Death Signaling. Cold Spring Harbor perspectives in biology 7, a006080. 11. Reginato, M.J. et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biology 5, 733-740 (2003). 12. Miranti, C.K. & Brugge, J.S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology 4, E83 (2002). 13. Wang, C.-C., Bajikar, S.S., Jamal, L., Atkins, K.A. & Janes, K.A. A time-and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nature cell biology 16, 345 (2014). 14. Kapuscinski, J. DAPI: a DNA-Specific Fluorescent Probe. Biotechnic & Histochemistry 70, 220-233 (1995). 15. Arpin, M., Chirivino, D., Naba, A. & Zwaenepoel, I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adhesion & Migration 5, 199-206 (2011). 16. Fiévet, B., Louvard, D. & Arpin, M. ERM proteins in epithelial cell organization and functions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773, 653-660 (2007). 17. Fievet, B.T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. The Journal of Cell Biology 164, 653 (2004). 18. Assémat, E., Bazellières, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, 614-630 (2008). 19. Tellez-Gabriel M, H.M., Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Theranostics 9(16), 4580-4594 (2019). 20. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214-218 (2013). 21. Martinez, P. et al. Parallel evolution of tumour subclones mimics diversity between tumours. The Journal of Pathology 230, 356-364 (2013). 22. Hsieh, J.J. et al. Overcome tumor heterogeneity-imposed therapeutic barriers through convergent genomic biomarker discovery: A braided cancer river model of kidney cancer. Semin Cell Dev Biol 64, 98-106 (2017). 23. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 366, 883-892 (2012). 24. Allison KH, S.G. Heterogeneity and Cancer. Oncology 28(9), 772-778 (2014). 25. Wilting, R.H. & Dannenberg, J.-H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates 15, 21-38 (2012). 26. Kumar, N. et al. Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations. Sci Rep 9, 10845-10845 (2019). 27. Park, J.H., Ahn, J.-H. & Kim, S.-B. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 3, e000357-e000357 (2018). 28. Vander Ark, A., Cao, J. & Li, X. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling 52, 112-120 (2018). 29. Zhang, Y. & Derynck, R. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends in Cell Biology 9, 274-279 (1999). 30. Andres, J.L., Stanley, K., Cheifetz, S. & Massagué, J. Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. The Journal of cell biology 109, 3137-3145 (1989). 31. Andres, J.L., DeFalcis, D., Noda, M. & Massagué, J. Binding of two growth factor families to separate domains of the proteoglycan betaglycan. Journal of Biological Chemistry 267, 5927-5930 (1992). 32. Lin, H.Y. et al. The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)-β Receptor: A HETEROGENEOUSLY GLYCOSYLATED PROTEIN WITH HIGH AFFINITY AND SELECTIVITY FOR TGF-β LIGANDS. Journal of Biological Chemistry 270, 2747-2754 (1995). 33. Margulis, V. et al. Type III Transforming Growth Factor-β (TGF-β) Receptor Mediates Apoptosis in Renal Cell Carcinoma Independent of the Canonical TGF-β Signaling Pathway. Clinical Cancer Research 14, 5722-5730 (2008). 34. Blobe, G.C. et al. Functional Roles for the Cytoplasmic Domain of the Type III Transforming Growth Factor β Receptor in Regulating Transforming Growth Factor β Signaling. Journal of Biological Chemistry 276, 24627-24637 (2001). 35. Nishida, J., Miyazono, K. & Ehata, S. Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms. Oncogene (2018). 36. Eickelberg, O., Centrella, M., Reiss, M., Kashgarian, M. & Wells, R.G. Betaglycan Inhibits TGF-β Signaling by Preventing Type I-Type II Receptor Complex Formation: GLYCOSAMINOGLYCAN MODIFICATIONS ALTER BETAGLYCAN FUNCTION. Journal of Biological Chemistry 277, 823-829 (2002). 37. Massagué, J. How cells read TGF-β signals. Nature Reviews Molecular Cell Biology 1, 169 (2000). 38. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119, 1420-1428 (2009). 39. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nature Cell Biology 16, 488 (2014). 40. Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442 (2002). 41. Janes, K.A., Wang, C.-C., Holmberg, K.J., Cabral, K. & Brugge, J.S. Identifying single-cell molecular programs by stochastic profiling. Nat Methods 7, 311-317 (2010). 42. Qu, Y. et al. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLOS ONE 10, e0131285 (2015). 43. Moffat, J. et al. A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell 124, 1283-1298 (2006). 44. Higuchi, R., Dollinger, G., Walsh, P.S. & Griffith, R. Simultaneous Amplification and Detection of Specific DNA Sequences. Bio/Technology 10, 413-417 (1992). 45. Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25, 169-193 (2000). 46. Rio, D.C., Ares, M., Hannon, G.J. & Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent). Cold Spring Harbor Protocols 2010, pdb.prot5439 (2010). 47. Rodríguez, A., Rodríguez, M., Córdoba, J.J. & Andrade, M.J. Design of Primers and Probes for Quantitative Real-Time PCR Methods, in PCR Primer Design. (ed. C. Basu) 31-56 (Springer New York, New York, NY; 2015). 48. Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic acids research 32, e103-e103 (2004). 49. PCR troubleshooting and optimization : the essential guide. (Caister Academic, Norfolk, U.K.; 2011). 50. Rogers-Broadway, K.-R. & Karteris, E. Amplification efficiency and thermal stability of qPCR instrumentation: Current landscape and future perspectives. Exp Ther Med 10, 1261-1264 (2015). 51. Kubista, M. et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine 27, 95-125 (2006). 52. Hirano, S. Western Blot Analysis, in Nanotoxicity: Methods and Protocols. (ed. J. Reineke) 87-97 (Humana Press, Totowa, NJ; 2012). 53. Kurien, B.T. & Scofield, R.H. Introduction to Protein Blotting, in Protein Blotting and Detection: Methods and Protocols. (eds. B.T. Kurien & R.H. Scofield) 9-22 (Humana Press, Totowa, NJ; 2009). 54. Kurien, B.T., Dorri, Y., Dillon, S., Dsouza, A. & Scofield, R.H. An Overview of Western Blotting for Determining Antibody Specificities for Immunohistochemistry, in Signal Transduction Immunohistochemistry: Methods and Protocols. (ed. A.E. Kalyuzhny) 55-67 (Humana Press, Totowa, NJ; 2011). 55. Kurien, B.T. & Scofield, R.H. Western blotting. Methods 38, 283-293 (2006). 56. Kurien, B.T. & Scofield, R.H. Western Blotting: An Introduction, in Western Blotting: Methods and Protocols. (eds. B.T. Kurien & R.H. Scofield) 17-30 (Springer New York, New York, NY; 2015). 57. Smith, B.J. SDS Polyacrylamide Gel Electrophoresis of Proteins, in Basic Protein and Peptide Protocols. (ed. J.M. Walker) 23-34 (Humana Press, Totowa, NJ; 1994). 58. Mahmood, T. & Yang, P.-C. Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4, 429-434 (2012). 59. Ye, F. et al. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA). Biomicrofluidics 9, 044106-044106 (2015). 60. Vachon, P.H. Methods for Assessing Apoptosis and Anoikis in Normal Intestine/Colon and Colorectal Cancer, in Colorectal Cancer: Methods and Protocols. (ed. J.-F. Beaulieu) 99-137 (Springer New York, New York, NY; 2018). 61. Katt, M.E., Placone, A.L., Wong, A.D., Xu, Z.S. & Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4, 12-12 (2016). 62. Wichterle, O. & LÍM, D. Hydrophilic Gels for Biological Use. Nature 185, 117-118 (1960). 63. Nishimura, S.-n. et al. Photocleavable Peptide–Poly(2-hydroxyethyl methacrylate) Hybrid Graft Copolymer via Postpolymerization Modification by Click Chemistry To Modulate the Cell Affinities of 2D and 3D Materials. ACS Applied Materials & Interfaces 11, 24577-24587 (2019). 64. Morales, J. et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24, 15-28 (2014). 65. Herceg, Z. & Wang, Z.-Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 477, 97-110 (2001). 66. Kale, J., Osterlund, E.J. & Andrews, D.W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death And Differentiation 25, 65 (2017). 67. Parsons, M.J. & Green, D.R. Mitochondria in cell death. Essays In Biochemistry 47, 99 (2010). 68. Estaquier, J., Vallette, F., Vayssiere, J.-L. & Mignotte, B. The Mitochondrial Pathways of Apoptosis, in Advances in Mitochondrial Medicine. (eds. R. Scatena, P. Bottoni & B. Giardina) 157-183 (Springer Netherlands, Dordrecht; 2012). 69. Muñoz-Pinedo, C. Signaling Pathways that Regulate Life and Cell Death: Evolution of Apoptosis in the Context of Self-Defense, in Self and Nonself. (ed. C. López-Larrea) 124-143 (Springer US, New York, NY; 2012). 70. Tait, S.W.G. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology 11, 621 (2010). 71. Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 9, 47 (2008). 72. Lomonosova, E. & Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 Suppl 1, S2-S19 (2008). 73. Kuwana, T. et al. Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane. Cell 111, 331-342 (2002). 74. Piñon, J.D., Labi, V., Egle, A. & Villunger, A. Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27, S41 (2009). 75. Guan, B.-J. et al. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem 289, 12593-12611 (2014). 76. Magne, L. et al. ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. Journal of Hepatology 54, 729-737 (2011). 77. Tameire, F. et al. ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nature Cell Biology 21, 889-899 (2019). 78. Baird, T.D. & Wek, R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3, 307-321 (2012). 79. Donnelly, N., Gorman, A.M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cellular and Molecular Life Sciences 70, 3493-3511 (2013). 80. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO reports 17, 1374-1395 (2016). 81. González-González, A. et al. Activating Transcription Factor 4 Modulates TGFβ-Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling. Clinical Cancer Research 24, 5697 (2018).
|