帳號:guest(18.117.78.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):尚俊霖
作者(外文):Shang, Chun-Lin
論文名稱(中文):綠膿桿菌外毒素-A PE38於毒殺HEK293T細胞之應用
論文名稱(外文):Application of Cytotoxic Pseudomonas Exotoxin-A PE38 in HEK293T Killing
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):張建文
陳盈潔
口試委員(外文):Chang, Chien-Wen
Chen, Ying-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080539
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:綠膿桿菌外毒素A細胞毒殺
外文關鍵詞:PseudomonasExotoxin-APE38CytotoxicityHEK293T
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據世界衛生組織統計,癌症是全球第二大死因。在癌症藥物的選擇中,主流的
化學抗癌藥物大多缺乏對癌細胞的專一性,在非腫瘤部位造成不必要的副作用。也因
此,隨著精準醫療概念的興起,標靶治療成為抗癌藥物的重點研究領域之一。標靶藥
物主要由兩項要素組成,分別是對癌細胞具有辨認能力的分子以及辨認後能產生細胞
毒性的毒素,使標靶藥物在毒殺癌細胞的同時,能將對周圍正常細胞的傷害降至最低。
本研究使用細胞毒素PE38 以進行癌細胞毒殺,其源自綠膿桿菌外毒素A,藉由刪除
外毒素A 基因序列中受體辨識片段,使其缺乏主動進入細胞的能力,搭配擁有腫瘤
標靶能力的分子便可成為具癌症專一性的毒素,擁有應用於癌症標靶治療的潛力。本
研究首先建立大腸桿菌表現PE38 的系統,以得到重組PE38。隨後將PE38 蛋白及帶
PE38 基因的質體轉染至癌化的人類胚胎腎上皮細胞株HEK293T 中,其中質體形式
之PE38 帶有已知具癌症標靶能力的3 端非轉譯區,能夠在分裂快速的細胞中穩定目
標基因mRNA,使轉譯效率提升。透過轉染後細胞活性分析,發現質體形式之PE38
在轉染後能夠明顯抑制HEK293T 細胞活性,而在西方墨點法分析轉染後存活細胞之
裂解液蛋白中卻無法得到PE38 蛋白的訊號。我們亦構築T7-RNA 聚合酶的表現載
體,經生產及純化後應用於體外轉錄反應,以嘗試合成RNA 形式之PE38。在未來,
本研究結合RNA 形式之PE38 毒殺研究後,便可提供PE38 藥物形式選擇的相關資
訊。綜合以上論述,PE38 擁有應用於標靶藥物的潛力。
Accroding to the World Health Organization, cancer is the number two cause of
deaths all over the world. However, among all the cancer drugs, the most popular one,
chemotherapy drugs, lack specificity for cancer cells and thereby induce side effect in noncancerous
regions. With the rise of the concept of precision medicine, targeted therapy has
become the key research field in anticancer drug. Tumor specificity of targeting molecules
and killing ability of toxins are two key attribute of targeted drugs, by which cancer cells
can be eliminated and surrounding normal cells remain unaffected. In this study, we used
biotoxin PE38 as cytotoxic agent for tumor-killing. PE38 is a truncated toxin derived from
Pseudomonas exotoxin A. By deleting the sequence coding for the receptor binding
domain of exotoxin A, PE38 loses its ability to invade cells. Combination of PE38 and
specific tumor-recognized molecules leads to a potential application in cancer targeted
therapy. Here, we transfected PE38 protein and PE38-coding plasmid to cancerated human
embryonic kidney cell line HEK293T. Analyzing the cell viability after transfection, we
found that PE38-coding plasmid leads to decline of cell activity. But further Western blot
results showed no PE38 signal in lysate of living cell after plasmid transfection. We also
produced and purified T7 RNA polymerase from a construct expressing plasmid, and used
it for in vitro transcription for PE38 RNA synthesis. In the future, by combining with the
research on the cytotoxicity from mRNA of PE38, this study can provide valuable
information for choosing the type of PE38 as a cancer drug. Finally, this study suggests
that PE38 can be a potential anti-cancer drug in targeted therapy.
中文摘要.......................................II
Abstract......................................III
致謝...........................................IV
縮寫表.........................................V
目錄...........................................VII
表目錄.........................................IX
圖目錄.........................................IX
壹、 前言.......................................1
1.1 癌症.......................................1
1.2 蛋白質藥物..................................2
1.3 DNA藥物....................................2
1.4 RNA藥物....................................3
1.5 mRNA抗癌藥物................................4
1.6 體外轉錄反應(In Vitro Transcription)......5
1.7 PE38.......................................6
1.8 研究目的...................................6
貳、 材料與方法.................................8
2.1 菌株培養...................................8
2.2 細胞培養...................................9
2.3 質體建構...................................10
2.4 蛋白誘導表現與純化..........................13
2.5 mRNA合成...................................14
2.6 細胞轉染(Transfection)....................15
2.7 PE38轉染效果檢..............................15
參、 結果......................................18
3.1 PE38重組蛋白於HEK293T細胞毒殺能力試驗........18
3.2 PE38-UTR之DNA質體於HEK293T毒殺能力試驗......19
3.3 T7-RNA聚合?蛋白之生產純化..................21
3.4 以T7-RNA聚合?合成PE38-UTR之RNA.............22
肆、 討論......................................24
伍、 參考文獻..................................28


1. Urruticoechea, A., et al., Recent advances in cancer therapy: an overview. Curr Pharm Des, 2010. 16(1): p. 3-10.
2. Mehta, S.R., et al., Radiotherapy: Basic Concepts and Recent Advances. Medical journal, Armed Forces India, 2010. 66(2): p. 158-162.
3. Huang, C.-Y., et al., A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. BioMedicine, 2017. 7(4): p. 23-23.
4. Biswal, S.G. and R.D. Mehta, Cutaneous Adverse Reactions of Chemotherapy in Cancer Patients: A Clinicoepidemiological Study. Indian J Dermatol, 2018. 63(1): p. 41-46.
5. Coates, A., et al., On the receiving end--patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol, 1983. 19(2): p. 203-8.
6. Padma, V.V., An overview of targeted cancer therapy. Biomedicine (Taipei), 2015. 5(4): p. 19.
7. Ke, X. and L. Shen, Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine, 2017. 1(2): p. 69-75.
8. Vecchio, I., et al., The Discovery of Insulin: An Important Milestone in the History of Medicine. Front Endocrinol (Lausanne), 2018. 9: p. 613.
9. Sanchez-Garcia, L., et al., Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact, 2016. 15: p. 33.
10. Lau, J.L. and M.K. Dunn, Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem, 2018. 26(10): p. 2700-2707.
11. Weldon, J.E. and I. Pastan, A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. Febs j, 2011. 278(23): p. 4683-700.
12. Ortiz, E., et al., Scorpion venom components as potential candidates for drug development. Toxicon, 2015. 93: p. 125-35.
13. Bolognesi, A., et al., Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules, 2016. 21(12).
14. Michl, P. and T.M. Gress, Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets, 2004. 4(8): p. 689-702.
15. Brinkmann, U. and R.E. Kontermann, The making of bispecific antibodies. MAbs, 2017. 9(2): p. 182-212.
16. Schrama, D., R.A. Reisfeld, and J.C. Becker, Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov, 2006. 5(2): p. 147-59.
17. Nasiri, H., et al., Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol, 2018. 233(9): p. 6441-6457.
18. Greene, M.K., et al., Forming next-generation antibody-nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem Sci, 2018. 9(1): p. 79-87.
19. Patel, A., et al., Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett, 2014. 21(11): p. 1102-20.
20. Futreal, P.A., et al., A census of human cancer genes. Nat Rev Cancer, 2004. 4(3): p. 177-83.
21. Amer, M.H., Gene therapy for cancer: present status and future perspective. Mol Cell Ther, 2014. 2: p. 27.
22. Pan, J.J., et al., Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol, 2009. 27(5): p. 799-804.
23. Shurin, M.R., et al., Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther, 2010. 10(11): p. 1539-53.
24. Hudecek, M., et al., Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells. Recent Results Cancer Res, 2016. 209: p. 37-50.
25. Mullard, A., FDA approves first CAR T therapy. Nat Rev Drug Discov, 2017. 16(10): p. 669.
26. Mao, J.R., et al., Gene regulation by antisense DNA produced in vivo. J Biol Chem, 1995. 270(34): p. 19684-7.
27. Kim, M., et al., Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents. Molecules, 2018. 23(4).
28. Kang, H.C., H. Cho, and Y.H. Bae, DNA Polyplexes as Combinatory Drug Carriers of Doxorubicin and Cisplatin: An in Vitro Study. Mol Pharm, 2015. 12(8): p. 2845-57.
29. Hu, Y., et al., Development of DNA tetrahedron-based drug delivery system. Drug Deliv, 2017. 24(1): p. 1295-1301.
30. Howe, S.J., et al., Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest, 2008. 118(9): p. 3143-50.
31. Lieberman, J., Tapping the RNA world for therapeutics. Nat Struct Mol Biol, 2018. 25(5): p. 357-364.
32. Doggrell, S.A., Pegaptanib: the first antiangiogenic agent approved for neovascular macular degeneration. Expert Opin Pharmacother, 2005. 6(8): p. 1421-3.
33. Burnett, J.C. and J.J. Rossi, RNA-based therapeutics: current progress and future prospects. Chem Biol, 2012. 19(1): p. 60-71.
34. Marina Tusup, L.E.F., Emmanuella Guenova, Thomas M. Kündig, Steve Pascolo Optimizing the Functionality of in vitro-Transcribed mRNA. Biomedical Journal of Scientific & Technical Research 2018. 7(2).
35. Kariko, K., et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther, 2008. 16(11): p. 1833-40.
36. Meng, Z., et al., A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci, 2017. 5(12): p. 2381-2392.
37. Schlake, T., et al., mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci, 2019. 76(2): p. 301-328.
38. Stepinski, J., et al., Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. Rna, 2001. 7(10): p. 1486-95.
39. Mockey, M., et al., mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun, 2006. 340(4): p. 1062-8.
40. Gustafsson, C., S. Govindarajan, and J. Minshull, Codon bias and heterologous protein expression. Trends Biotechnol, 2004. 22(7): p. 346-53.
41. Kariko, K., et al., Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther, 2012. 20(5): p. 948-53.
42. Kariko, K., A. Kuo, and E. Barnathan, Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther, 1999. 6(6): p. 1092-100.
43. Ross, J. and T.D. Sullivan, Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood, 1985. 66(5): p. 1149-54.
44. Ferizi, M., et al., Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Sci Rep, 2016. 6: p. 39149.
45. Shepelev, M.V., et al., Application of mRNA regulatory regions to improve tumor specificity of transgene expression. Cancer Gene Ther, 2011. 18(9): p. 682-4.
46. Sahu, I., et al., Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther, 2019. 27(4): p. 803-823.
47. Sahin, U., K. Kariko, and O. Tureci, mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov, 2014. 13(10): p. 759-80.
48. Pardi, N., et al., mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 2018. 17(4): p. 261-279.
49. Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.
50. Beatty, G.L., et al., Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. Journal of Clinical Oncology, 2015. 33(15_suppl): p. 3007-3007.
51. Schuler-Thurner, B., et al., [Immunotherapy of uveal melanoma: vaccination against cancer. Multicenter adjuvant phase 3 vaccination study using dendritic cells laden with tumor RNA for large newly diagnosed uveal melanoma]. Ophthalmologe, 2015. 112(12): p. 1017-21.
52. Jain, R., et al., MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct. Nucleic Acid Ther, 2018. 28(5): p. 285-296.
53. Milligan, J.F., et al., Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res, 1987. 15(21): p. 8783-98.
54. Krieg, P.A. and D.A. Melton, In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol, 1987. 155: p. 397-415.
55. McAllister, W.T., H. Kupper, and E.K. Bautz, Kinetics of transcription by the bacteriophage-T3 RNA polymerase in vitro. Eur J Biochem, 1973. 34(3): p. 489-501.
56. Lee, T.I. and R.A. Young, Transcriptional regulation and its misregulation in disease. Cell, 2013. 152(6): p. 1237-51.
57. Deng, W. and S.G. Roberts, A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev, 2005. 19(20): p. 2418-23.
58. Lagrange, T., et al., New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev, 1998. 12(1): p. 34-44.
59. Deng, W., et al., TFIIB recognition elements control the TFIIA-NC2 axis in transcriptional regulation. Mol Cell Biol, 2009. 29(6): p. 1389-400.
60. Deng, W., et al., Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1524-9.
61. McNamara, M.A., S.K. Nair, and E.K. Holl, RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res, 2015. 2015: p. 794528.
62. Allured, V.S., et al., Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A, 1986. 83(5): p. 1320-4.
63. Kounnas, M.Z., et al., The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem, 1992. 267(18): p. 12420-3.
64. Zdanovsky, A.G., et al., Mechanism of action of Pseudomonas exotoxin. Identification of a rate-limiting step. J Biol Chem, 1993. 268(29): p. 21791-9.
65. Kreitman, R.J., et al., Properties of chimeric toxins with two recognition domains: interleukin 6 and transforming growth factor alpha at different locations in Pseudomonas exotoxin. Bioconjug Chem, 1992. 3(1): p. 63-8.
66. Kreitman, R.J., et al., Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol, 2012. 30(15): p. 1822-8.
67. Lim, D., et al., Anti-tumor activity of an immunotoxin (TGFalpha-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget, 2017. 8(23): p. 37550-37560.
68. Lopez-Garcia, J., et al., HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J Funct Biomater, 2014. 5(2): p. 43-57.
69. Shaner, N.C., P.A. Steinbach, and R.Y. Tsien, A guide to choosing fluorescent proteins. Nat Methods, 2005. 2(12): p. 905-9.
70. Hundeshagen, P., et al., Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy. BMC biology, 2011. 9: p. 38-38.
71. Strack, R., Super-resolution imaging with mCherry. Nature Methods, 2017. 14: p. 769.
72. Ramskold, D., E. Kavak, and R. Sandberg, How to analyze gene expression using RNA-sequencing data. Methods Mol Biol, 2012. 802: p. 259-74.
73. Celis, J.E., et al., Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett, 2000. 480(1): p. 2-16.
74. Rabani, M., et al., A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Molecular cell, 2017. 68(6): p. 1083-1094.e5.
75. Geissler, R. and A. Grimson, A position-specific 3'UTR sequence that accelerates mRNA decay. RNA Biol, 2016. 13(11): p. 1075-1077.
76. Figueroa, E., et al., A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines. Journal of nanobiotechnology, 2017. 15(1): p. 36-36.
77. Hornstein, B.D., et al., Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells. PloS one, 2016. 11(12): p. e0167537-e0167537.
78. Ellinger, T. and R. Ehricht, Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques, 1998. 24(5): p. 718-20.
79. Lykke-Andersen, J. and J. Christiansen, The C-terminal carboxy group of T7 RNA polymerase ensures efficient magnesium ion-dependent catalysis. Nucleic Acids Research, 1998. 26(24): p. 5630-5635.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *