|
1. Gelband, H., et al., Disease Control Priorities, (Volume 3): Cancer. 2015: The World Bank. 2. Bosch, F.X., et al., Prevalence of Human Papillomavirus in Cervical Cancer: a Worldwide Perspective. JNCI: Journal of the National Cancer Institute, 1995. 87(11): p. 796-802. 3. Burd, E.M., Human papillomavirus and cervical cancer. Clinical microbiology reviews, 2003. 16(1): p. 1-17. 4. Waggoner, S.E., Cervical cancer. The lancet, 2003. 361(9376): p. 2217-2225. 5. Bosch, F., et al., Risk factors for cervical cancer in Colombia and Spain. International journal of cancer, 1992. 52(5): p. 750-758. 6. BRINTON, L.A., et al., PARITY AS A RISK FACTOR FOR CERVICAL CANCER. American Journal of Epidemiology, 1989. 130(3): p. 486-496. 7. Frumovitz, M., Small- and Large-Cell Neuroendocrine Cervical Cancer. Oncology (Williston Park), 2016. 30(1): p. 70, 77-8, 93. 8. Ardill, J.E. and B. Erikkson, The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut. Endocr Relat Cancer, 2003. 10(4): p. 459-62. 9. Kloppel, G., Oberndorfer and his successors: from carcinoid to neuroendocrine carcinoma. Endocr Pathol, 2007. 18(3): p. 141-4. 10. Taal, B.G. and O. Visser, Epidemiology of neuroendocrine tumours. Neuroendocrinology, 2004. 80 Suppl 1: p. 3-7. 11. Speisky, D., et al., Molecular Profiling of Pancreatic Neuroendocrine Tumors in Sporadic and Von Hippel-Lindau Patients. Clinical Cancer Research, 2012. 18(10): p. 2838. 12. Seregni, E., et al., Clinical significance of blood chromogranin A measurement in neuroendocrine tumours. Annals of Oncology, 2001. 12(suppl_2): p. S69-S72. 13. Chou, W.C., et al., Plasma chromogranin a levels predict survival and tumor response in patients with advanced gastroenteropancreatic neuroendocrine tumors. Anticancer Research, 2014. 34(10): p. 5661-5669. 14. Gadducci, A., S. Carinelli, and G. Aletti, Neuroendrocrine tumors of the uterine cervix: A therapeutic challenge for gynecologic oncologists. Gynecologic Oncology, 2017. 144(3): p. 637-646. 15. Manchana, T., et al., Targeted therapies for rare gynaecological cancers. The Lancet Oncology, 2010. 11(7): p. 685-693. 16. Margolis, B., et al., Natural history and outcome of neuroendocrine carcinoma of the cervix. Gynecologic Oncology, 2016. 141(2): p. 247-254. 17. Lin, L.H., et al., Biomarker discovery for neuroendocrine cervical cancer. Electrophoresis, 2014. 35(14): p. 2039-2045. 18. Lawson, D., M. Harrison, and C. Shapland, Fibroblast transgelin and smooth muscle SM22α are the same protein, the expression of which is down-regulated in many cell lines. Cell Motility, 1997. 38(3): p. 250-257. 19. Han, M., et al., Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci, 2009. 84(13-14): p. 394-401. 20. Pankajakshan, D., et al., Successful transfection of genes using AAV-2/9 vector in swine coronary and peripheral arteries. The Journal of surgical research, 2012. 175(1): p. 169-175. 21. Assinder, S.J., J.-A.L. Stanton, and P.D. Prasad, Transgelin: An actin-binding protein and tumour suppressor. The International Journal of Biochemistry & Cell Biology, 2009. 41(3): p. 482-486. 22. Zhou, H.-m., et al., Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer, 2016. 16(1): p. 55. 23. Lin, Y., et al., Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer. Neoplasia, 2009. 11(9): p. 864-73. 24. Liu, F.-T. and G.A. Rabinovich, Galectins as modulators of tumour progression. Nature Reviews Cancer, 2005. 5(1): p. 29-41. 25. Thijssen, V.L., et al., Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta, 2015. 1855(2): p. 235-47. 26. Shen, K.H., et al., Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway. Cancer Sci, 2016. 107(10): p. 1390-1398. 27. Camby, I., et al., Galectin-1: a small protein with major functions. Glycobiology, 2006. 16(11): p. 137R-157R. 28. Zhang, L., et al., Reversal of galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 cells. Biomed Pharmacother, 2016. 83: p. 265-270. 29. Wang, F., et al., Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway. Oncotarget, 2017. 8(15): p. 25097-25106. 30. Sanjuan, X., et al., Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology, 1997. 113(6): p. 1906-15. 31. van den Brule, F., et al., Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest, 2003. 83(3): p. 377-86. 32. Choufani, G., et al., The levels of expression of galectin-1, galectin-3, and the Thomsen-Friedenreich antigen and their binding sites decrease as clinical aggressiveness increases in head and neck cancers. Cancer, 1999. 86(11): p. 2353-63. 33. Kim, H.J., et al., Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum Pathol, 2013. 44(1): p. 62-8. 34. Ellerhorst, J., et al., Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol, 1999. 14(2): p. 217-24. 35. Park, G.H., et al., TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep, 2014. 32(4): p. 1347-54. 36. Zhou, L., et al., Upregulation of transgelin is an independent factor predictive of poor prognosis in patients with advanced pancreatic cancer. Cancer Sci, 2013. 104(4): p. 423-30. 37. Lee, E.-K., et al., Transgelin Promotes Migration and Invasion of Cancer Stem Cells. Journal of Proteome Research, 2010. 9(10): p. 5108-5117. 38. Yang, Z., et al., Transgelin Functions as a Suppressor via Inhibition of ARA54-Enhanced Androgen Receptor Transactivation and Prostate Cancer Cell Growth. Vol. 21. 2007. 343-58. 39. Foster, I., Cancer: A cell cycle defect. Radiography, 2008. 14(2): p. 144-149. 40. Casem, M.L., Chapter 13 - Cell Cycle, in Case Studies in Cell Biology, M.L. Casem, Editor. 2016, Academic Press: Boston. p. 299-326. 41. Reed, J.C., Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol, 1997. 34(4 Suppl 5): p. 9-19. 42. Kroemer, G., L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol Rev, 2007. 87(1): p. 99-163. 43. Weston, C.R. and R.J. Davis, The JNK signal transduction pathway. Curr Opin Cell Biol, 2007. 19(2): p. 142-9. 44. Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell, 2000. 103(2): p. 239-52. 45. Bogoyevitch, M.A. and B. Kobe, Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 1061-95. 46. Kennedy, N.J. and R.J. Davis, Role of JNK in tumor development. Cell cycle (Georgetown, Tex.), 2003. 2(3): p. 199-201. 47. Chang, Q., et al., JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma. Mol Cancer, 2009. 8: p. 64. 48. She, Q.B., et al., Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res, 2002. 62(5): p. 1343-8. 49. Chauhan, D., et al., JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem, 2003. 278(20): p. 17593-6. 50. Oleinik, N.V., N.I. Krupenko, and S.A. Krupenko, Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene, 2007. 26(51): p. 7222-30. 51. Bierie, B. and H.L. Moses, TGFβ: the molecular Jekyll and Hyde of cancer. Nature Reviews Cancer, 2006. 6(7): p. 506-520. 52. Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. Embo j, 2000. 19(8): p. 1745-54. 53. Attisano, L. and J.L. Wrana, Signal transduction by the TGF-beta superfamily. Science, 2002. 296(5573): p. 1646-7. 54. Lecanda, J., et al., TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle, 2009. 8(5): p. 742-56. 55. Harvey, S., et al., Insights into a plasma membrane signature. Physiol Genomics, 2001. 5(3): p. 129-36. 56. Chiang, W.F., et al., Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol, 2008. 44(4): p. 325-34. 57. Hsu, Y.-L., et al., Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin α6β4 and Notch1/Jagged2 signaling pathway. Carcinogenesis, 2013. 34(6): p. 1370-1381. 58. Sherr, C.J. and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 2004. 18(22): p. 2699-711. 59. Hydbring, P., M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nature Reviews Molecular Cell Biology, 2016. 17: p. 280.
|