|
1. The Cancer Genome Atlas Research, N., et al., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008. 455: p. 1061. 2. Zhang, J., et al., International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database : the journal of biological databases and curation, 2011. 2011: p. bar026-bar026. 3. Tomczak, K., P. Czerwińska, and M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary oncology (Poznan, Poland), 2015. 19(1A): p. A68-A77. 4. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010. 38(16): p. e164. 5. McLaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biol, 2016. 17(1): p. 122. 6. De Baets, G., et al., SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res, 2012. 40(Database issue): p. D935-9. 7. Ramos, A.H., et al., Oncotator: cancer variant annotation tool. Hum Mutat, 2015. 36(4): p. E2423-9. 8. Gao, J., et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 2013. 6(269): p. pl1. 9. Mayakonda, A., et al., Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res, 2018. 28(11): p. 1747-1756. 10. Skidmore, Z.L., et al., GenVisR: Genomic Visualizations in R. Bioinformatics (Oxford, England), 2016. 32(19): p. 3012-3014. 11. Lawrence, M.S., et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013. 499(7457): p. 214-218. 12. Rosenthal, R., et al., deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biology, 2016. 17(1): p. 31. 13. Alexandrov, L.B., et al., Deciphering signatures of mutational processes operative in human cancer. Cell Rep, 2013. 3(1): p. 246-59. 14. Huang, P.J., et al., mSignatureDB: a database for deciphering mutational signatures in human cancers. Nucleic Acids Res, 2018. 46(D1): p. D964-d970. 15. Nik-Zainal, S., et al., Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 2016. 534: p. 47. 16. Petljak, M. and L.B. Alexandrov, Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis, 2016. 37(6): p. 531-40. 17. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303. 18. Koboldt, D.C., et al., VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res, 2012. 22(3): p. 568-76. 19. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9. 20. Poplin, R., et al., A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018. 36: p. 983. 21. McCarthy, D.J., et al., Choice of transcripts and software has a large effect on variant annotation. Genome Med, 2014. 6(3): p. 26. 22. Chen, T.W., et al., APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat Commun, 2017. 8(1): p. 465. 23. Huang, P.-J., et al., VAReporter: variant reporter for cancer research of massive parallel sequencing. BMC genomics, 2018. 19(Suppl 2): p. 86-86. 24. India Project Team of the International Cancer Genome, C., et al., Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nature Communications, 2013. 4: p. 2873. 25. Yadav, M., et al., Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014. 515(7528): p. 572-6. 26. Murphy, J.P., et al., MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies. J Proteome Res, 2017. 16(4): p. 1806-1816. 27. Schumacher, T.N. and R.D. Schreiber, Neoantigens in cancer immunotherapy. 2015. 348(6230): p. 69-74. 28. Andreatta, M. and M. Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics, 2016. 32(4): p. 511-7. 29. Jurtz, V., et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol, 2017. 199(9): p. 3360-3368. 30. Karosiene, E., et al., NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics, 2012. 64(3): p. 177-86. 31. O'Donnell, T.J., et al., MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst, 2018. 7(1): p. 129-132.e4. 32. Hundal, J., et al., pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine, 2016. 8(1): p. 11. 33. Wu, J., et al., TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics Proteomics Bioinformatics, 2018. 16(4): p. 276-282.
|