帳號:guest(3.149.248.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴庭琇
作者(外文):Lai, Ting-Xiu
論文名稱(中文):白色念珠菌Rap1對生物膜形成之功能分析
論文名稱(外文):Functional Characterization of Rap1 in Candida albicans Biofilm Formation
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung-Yu
口試委員(中文):高茂傑
陳穎練
口試委員(外文):Kao, Mou-Chieh
Chen, Ying-Lien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:106080517
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:54
中文關鍵詞:白色念珠菌生物膜Rap1
外文關鍵詞:Candida albicansbiofilmRap1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
白色念珠菌是人體常見的正常共生真菌,經常存在於一般健康人體的皮膚及黏膜表面。然而,白色念珠菌也是一種伺機性致病菌,可造成表淺型或甚至全身系統性感染,尤其對免疫力低下的患者造成嚴重威脅。在黏膜及植入性醫療器材上形成生物膜是白色念珠菌毒力及致病的相關特徵之一,生物膜的形成並且與白色念珠菌的抗藥性及對人體免疫系統的抵禦都非常相關。本研究中,我們主要研究白色念珠菌在形成生物膜新的調節機制,發現轉錄因子Rap1參與調控白色念珠菌之細胞壁完整性、生物膜生成及毒力。研究結果顯現RAP1基因剔除的菌株展現比野生菌株有更高生物膜形成的能力,其原因可能是由於生物膜基質之增加。此外,RAP1剔除菌株的細胞壁醣類成分與Mkc1和Cek1活化皆有增加的現象。最後,我們也以Galleria mellonella 幼蟲做為全身系統性感染的模式,發現RAP1基因剔除減弱了白色念珠菌的毒力。據我們所知,這是第一份發現Rap1參與白色念珠菌細胞壁、生物膜的形成和毒力的研究報告。
Candida albicans is a member of human microflora and commonly inhabits the skin and mucosal surfaces of healthy individuals without any harm. However, C. albicans is also an opportunistic pathogen that can cause a range of infections including superficial candidiasis and life-threatening systemic candidemia, particularly in the immunocompromised patients. One of the important features related to C. albicans virulence and pathogenesis is its ability to form biofilm on the mucosa or implanted medical devices. Moreover, biofilm is also closely related to antifungal resistance and fungal escape from human immune defense. In this study, we revealed new mechanisms in regulation of C. albicans biofilm formation. Our results indicated that the transcription factor Rap1 contributes to cell well integrity (CWI), biofilm formation, and virulence. The deletion of RAP1 enhanced biofilm formation compared to the WT and RAP1-reintegrated strains, possibly through enhancing the extracellular matrix. In addition, the rap1-deletion mutant showed an increase in cell wall glycan contents and Mkc1 and Cek1 activation. Finally, the rap1-deleted mutant attenuated C. albicans virulence in a Galleria mellonella systemic infection model. To our knowledge, this is the first report to show that Rap1 involves in C. albicans cell wall, biofilm formation and virulence.
中文摘要................................................................................................................................... I
Abstract...................................................................................................................................II
致謝辭..........................................................................................................................Ⅲ
1. Introduction..........................................................................................................1
1.1 Infections caused by Candida species and fitness attributes and virulence factors of C. albicans .............................................................................................2
1.2 Drug resistance and biofilm formation of C. albicans.....................................3
(1) Emergence of antifungal resistance in C. albicans ..................................3
(2) Biofilm formation in C. albicans infections and drug resistance.............4
1.3 The cell wall of C. albicans .............................................................................5
(1) The composition and architecture of the cell wall ...................................5
(2) The cell wall integrity signaling pathway ................................................6
1.4 The transcription factor Rap1 ..........................................................................7
2. Materials and Methods ....................................................................................8
2.1 C. albicans strains and growth conditions .......................................................9
2.2 Measurement of cell adhesion and biofilm formation .....................................9
2.3 Examination of C. albicans biofilm and extracellular matrix using scanning electron microscopy (SEM) .................................................................................10
2.4 Cell susceptibility to cell wall-perturbing agents...........................................10
2.5 Cell surface hydrophobicity (CSH) assay......................................................11
2.6 Measurement of carbohydrate content in the cell wall ..................................11
(1) Measurement of the total cell-wall carbohydrates .................................11
(2) Measurement of the content of the individual cell-wall carbohydrates .12
2.7 Calcofluor white staining for cell wall chitin ................................................13
2.8 RNA preparation and reverse transcription (RT) real-time quantitative PCR (qPCR) .................................................................................................................13
2.9 Biofilm matrix isolation.................................................................................14 2.10 Protein extraction and protein quantification...............................................14 2.11 Western blot .................................................................................................15 2.12 Examination of the hyphal formation ..........................................................15
2.13 Biofilm antifungal susceptibility assay........................................................15 2.14 Determining the β-glucan exposure on the cell wall ...................................16 2.15 Virulence assay using the Galleria mellonella model .................................16
2.16 Statistical analysis........................................................................................17
3. Results ..................................................................................................................18
3.1 C. albicans Rap1 is involved in biofilm formation........................................19
3.2 Rap1 also affects cell wall integrity...............................................................20
3.3 Rap1 affects cell wall integrity through the Mkc1 and Cek1 MAPK pathways..............................................................................................................................21
3.4 The adhesion ability of the rap1-deletion is dispensable in biofilm formation..............................................................................................................................22
3.5 The filamentation of the rap1-deletion is dispensable in biofilm formation .22
3.6 The biofilm of the rap1-deletion mutant shows an increase in extracellular matrix ...................................................................................................................23
3.7 The biofilm of the rap1-deletion is more resistant to antifungal drug than the controls.................................................................................................................23
3.8 The rap1-deletion mutant attenuates C. albicans virulence ..........................24
4. Discussion............................................................................................................26
5. References ...........................................................................................................30
Tables.........................................................................................................................38
Table 1. Strains used in this study ....................................................................38
Table 2. Oligonucleotides used in this study....................................................39
Figures.......................................................................................................................40
Fig. 1. Deletion of RAP1 enhances C. albicans biofilm formation. ....................41
Fig. 2. Deletion of RAP1 changes the cell wall integrity. ....................................42
Fig. 3. The rap1-deletion increased the cell wall polysaccharides with the cell wall defect............................................................................................................43
Fig. 4. Activation of the cell wall integrity signaling pathways in the rap1-deleted mutant......................................................................................................44
Fig. 5. The adhesion is not the key to affect the increased biofilm formation in the rap1-deletion mutant......................................................................................45
Fig. 6. The rap1-deletion mutant exhibits a normal filamentous growth. ...........46
Fig. 7. Deletion of RAP1 enhances C. albicans extracellular-matrix secretion in biofilm formation.................................................................................................48
Fig. 8. The biofilms of the rap1-deletion mutant are more tolerance to fluconazole than the control strains. ....................................................................49
Fig. 9. Deletion of RAP1 enhances β-1,3-glucan exposure and attenuates C. albicans virulence. ...............................................................................................51
Supplementary Figures.......................................................................................52
Fig. S1. The gene expressions of chitin synthase are mediated by the CWI pathway................................................................................................................53
Fig. S2. The gene expressions of glucan synthase are mediated by the CWI pathway................................................................................................................54
1. Hall, R.A., Dressed to impress: impact of environmental adaptation on the Candida albicans cell wall. Mol Microbiol, 2015. 97(1): p. 7-17.
2. Mavor, A.L., S. Thewes, and B. Hube, Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets, 2005. 6(8): p. 863-74.
3. Nucci, M. and E. Anaissie, Revisiting the Source of Candidemia: Skin or Gut? Clinical Infectious Diseases, 2001. 33(12): p. 1959-1967.
4. Safdar, A., T.W. Bannister, and Z. Safdar, The predictors of outcome in immunocompetent patients with hematogenous candidiasis. Int J Infect Dis, 2004. 8(3): p. 180-6.
5. Anwar, K.P., A. Malik, and K.H. Subhan, Profile of candidiasis in HIV infected patients. Iranian journal of microbiology, 2012. 4(4): p. 204-209.
6. Patil, S., et al., Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. 2015. 6(1391).
7. Calderone, R.A. and W.A. Fonzi, Virulence factors of Candida albicans. Trends in Microbiology, 2001. 9(7): p. 327-335.
8. Hoyer, L.L. and E. Cota, Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol, 2016. 7: p. 280.
9. Ruiz-Herrera, J., et al., Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res, 2006. 6(1): p. 14-29.
10. Lan, C.-Y., et al., Metabolic specialization associated with phenotypic switching in Candida albicans. 2002. 99(23): p. 14907-14912.
11. Morschhauser, J., Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol, 2010. 199(3): p. 165-72.
12. Desai, J.V., Candida albicans Hyphae: From Growth Initiation to Invasion. J Fungi (Basel), 2018. 4(1).
13. Moyes, D.L., J.P. Richardson, and J.R. Naglik, Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence, 2015. 6(4): p. 338-46.
14. Pfaller, M.A. and D.J. Diekema, Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol, 2004. 42(10): p. 4419-31.
15. Perlroth, J., B. Choi, and B. Spellberg, Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007. 45(4): p. 321-46.
16. Wilson, L.S., et al., The direct cost and incidence of systemic fungal infections. Value Health, 2002. 5(1): p. 26-34.
17. Hoehamer, C.F., et al., Changes in the Proteome of Candida albicans in Response to Azole, Polyene, and Echinocandin Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2010. 54(5): p. 1655.
18. Akins, R.A., An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, 2005. 43(4): p. 285-318.
19. Taff, H.T., et al., Mechanisms of Candida biofilm drug resistance. Future microbiology, 2013. 8(10): p. 1325-1337.
20. Chandra, J., et al., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol, 2001. 183(18): p. 5385-94.
21. Zahran, K.M., et al., Patterns of Candida biofilm on intrauterine devices. 2015. 64(4): p. 375-381.
22. Nobile, C.J. and A.D. Johnson, Candida albicans Biofilms and Human Disease. Annu Rev Microbiol, 2015. 69: p. 71-92.
23. Chin, V.K., et al., Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host-Pathogen Interaction: A Review. Int J Mol Sci, 2016. 17(10).
24. Cauda, R., Candidaemia in patients with an inserted medical device. Drugs, 2009. 69 Suppl 1: p. 33-8.
25. Fanning, S. and A.P. Mitchell, Fungal biofilms. PLoS Pathog, 2012. 8(4): p. e1002585.
26. Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002. 15(2): p. 167-93.
27. Wall, G., et al., Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Current Opinion in Microbiology, 2019. 52: p. 1-6.
28. Nett, J. and D. Andes, Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol, 2006. 9(4): p. 340-5.
29. Blankenship, J.R. and A.P. Mitchell, How to build a biofilm: a fungal perspective. Curr Opin Microbiol, 2006. 9(6): p. 588-94.
30. Finkel, J.S. and A.P. Mitchell, Genetic control of Candida albicans biofilm development. Nat Rev Microbiol, 2011. 9(2): p. 109-18.
31. Pierce, C.G., et al., The Candida albicans Biofilm Matrix: Composition, Structure and Function. J Fungi (Basel), 2017. 3(1).
32. Al-Fattani, M.A. and L.J. Douglas, Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. 2006. 55(8): p. 999-1008.
33. Mitchell, K.F., et al., Community participation in biofilm matrix assembly and function. Proceedings of the National Academy of Sciences, 2015. 112(13): p.4092.
34. Nett, J.E., et al., Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrobial agents and chemotherapy, 2010. 54(8): p. 3505-3508.
35. Uppuluri, P., et al., Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLOS Pathogens, 2010. 6(3): p. e1000828.
36. Albuquerque, P. and A. Casadevall, Quorum sensing in fungi – a review. Medical Mycology, 2012. 50(4): p. 337-345.
37. Ramage, G., et al., Fungal biofilm resistance. Int J Microbiol, 2012. 2012: p. 528521.
38. Enjalbert, B. and M. Whiteway, Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell, 2005. 4(7): p. 1203-10.
39. Cao, Y.-Y., et al., cDNA Microarray Analysis of Differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol. Antimicrobial Agents and Chemotherapy, 2005. 49(2): p. 584.
40. Fukazawa, Y. and K. Kagaya, Molecular bases of adhesion of Candida albicans. J Med Vet Mycol, 1997. 35(2): p. 87-99.
41. Nobbs, A.H., M.M. Vickerman, and H.F. Jenkinson, Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae Reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryotic Cell, 2010. 9(10): p. 1622.
42. Hopke, A., et al., Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol, 2018. 26(4): p. 284-295.
43. Gow, N.A.R. and B. Hube, Importance of the Candida albicans cell wall during commensalism and infection. Current Opinion in Microbiology, 2012. 15(4): p. 406-412.
44. de Groot, P.W.J., et al., Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryotic cell, 2013. 12(4): p. 470-481.
45. Gow, N.A.R., J.P. Latge, and C.A. Munro, The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr, 2017. 5(3).
46. Barelle, C.J., et al., Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cellular Microbiology, 2006. 8(6): p. 961-971.
47. Brown, A.J.P., et al., Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in microbiology, 2014. 22(11): p. 614-622.
48. Grahl, N., et al., Hypoxia and Fungal Pathogenesis: To Air or Not To Air?Eukaryotic Cell, 2012. 11(5): p. 560.
49. Wheeler, R.T., et al., Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment. PLOS Pathogens, 2008. 4(12): p. e1000227.
50. Hopke, A., et al., Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition. PLoS Pathog, 2016. 12(5): p. e1005644.
51. Pericolini, E., et al., Epitope unmasking in vulvovaginal candidiasis is associated with hyphal growth and neutrophilic infiltration. PLOS ONE, 2018. 13(7): p. e0201436.
52. Monge, R.A., et al., The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006. 152(Pt 4): p. 905-12.
53. Herrero de Dios, C., et al., The Role of MAPK Signal Transduction Pathways in the Response to Oxidative Stress in the Fungal Pathogen Candida albicans: Implications in Virulence. Current Protein and Peptide Science, 2010. 11(8): p. 693-703.
54. Cai, Y., et al., Decoding telomere protein Rap1: Its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy. Cell Cycle, 2017. 16(19): p. 1765-1773.
55. Hofmann, J.F.X., et al., RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML. Cell, 1989. 57(5): p. 725-737.
56. Shore, D. and K. Nasmyth, Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 1987. 51(5): p. 721-732.
57. Tomar, R.S. and G.K. Azad, The multifunctional transcription factor Rap1: a regulator of yeast physiology. Frontiers in Bioscience, 2016. 21: p. 918-930.
58. Biswas, K., K.-J. Rieger, and J. Morschhäuser, Functional analysis of CaRAP1 , encoding the Repressor/activator protein 1 of Candida albicans. Gene, 2003. 307: p. 151-158.
59. Ramage, G., et al., Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol, 2001. 18(4): p. 163-70.
60. Tsai, P.W., et al., The role of Mss11 in Candida albicans biofilm formation. Mol Genet Genomics, 2014. 289(5): p. 807-19.
61. Sandini, S., et al., The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol, 2011. 11: p. 106.
62. de Souza, R.D., et al., Cell surface hydrophobicity of Candida albicans isolated from elder patients undergoing denture-related candidosis.Gerodontology, 2009. 26(2): p. 157-61.
63. Francois, J.M., A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc, 2006. 1(6): p. 2995-3000.
64. Hsu, P.C., C.Y. Yang, and C.Y. Lan, Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell, 2011. 10(2): p. 207-25.
65. Nailis, H., et al., Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol, 2006. 7: p. 25.
66. Hsu, P.C., et al., Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Eukaryot Cell, 2013. 12(6): p. 804-15.
67. Dominguez, E., et al., Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. mBio, 2018. 9(2).
68. Tsao, C.C., Y.T. Chen, and C.Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol, 2009. 46(2): p. 126-36.
69. Wartenberg, A., et al., Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLOS Genetics, 2014. 10(12): p. e1004824.
70. Fuchs, B.B., et al., Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence, 2010. 1(6): p. 475-82.
71. Wang, Y.C., et al., Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics, 2010. 11: p. 53.
72. Tsai, P.W., et al., The role of Mss11 in Candida albicans biofilm formation. Mol Genet Genomics, 2014.
73. Sherrington, S.L., et al., Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLOS Pathogens, 2017. 13(5): p. e1006403.
74. Beauvais, A. and J.-P. Latgé, Special Issue: Fungal Cell Wall. Journal of fungi (Basel, Switzerland), 2018. 4(3): p. 91.
75. Höfs, S., S. Mogavero, and B. Hube, Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. Journal of Microbiology, 2016. 54(3): p. 149-169.
76. Ram, A.F.J. and F.M. Klis, Identification of fungal cell wall mutants usingsusceptibility assays based on Calcofluor white and Congo red. Nature Protocols, 2006. 1(5): p. 2253-2256.
77. Silva-Dias, A., et al., Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol, 2015. 6: p. 205.
78. Masuoka, J. and K.C. Hazen, Differences in the acid-labile component of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glycobiology, 1999. 9(11): p. 1281-1286.
79. Costa-de-Oliveira, S., et al., Determination of chitin content in fungal cell wall: An alternative flow cytometric method. Cytometry Part A, 2013. 83A(3): p. 324-328.
80. Munro, C.A., et al., The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular Microbiology, 2007. 63(5): p. 1399-1413.
81. Lee, K.K., et al., Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrobial agents and chemotherapy, 2012. 56(1): p. 208-217.
82. Sanz, A.B., et al., The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. Journal of fungi (Basel, Switzerland), 2017. 4(1): p. 1.
83. Nobile, C.J., et al., Complementary adhesin function in C. albicans biofilm formation. Curr Biol, 2008. 18(14): p. 1017-24.
84. Lohse, M.B., et al., Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2017. 16: p. 19.
85. Cavalheiro, M. and M.C. Teixeira, Candida Biofilms: Threats, Challenges, and Promising Strategies. Frontiers in medicine, 2018. 5: p. 28-28.
86. Taff, H.T., et al., A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog, 2012. 8(8): p. e1002848.
87. Mayer, F.L., D. Wilson, and B. Hube, Candida albicans pathogenicity mechanisms. Virulence, 2013. 4(2): p. 119-128.
88. Chen, T., et al., Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLOS Genetics, 2019. 15(1): p. e1007892.
89. Galán-Díez, M., et al., Candida albicans β-Glucan Exposure Is Controlled by the Fungal CEK1-Mediated Mitogen-Activated Protein Kinase Pathway That Modulates Immune Responses Triggered through Dectin-1. Infection and Immunity, 2010. 78(4): p. 1426.
90. Jacobsen, I.D., Galleria mellonella as a model host to study virulence ofCandida. Virulence, 2014. 5(2): p. 237-9.
91. Platt, J.M., et al., Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence. Genes Dev, 2013. 27(12): p. 1406-20.
92. Uemura, H., et al., Isolation and characterization of Candida albicans homologue of RAP1, a repressor and activator protein gene in Saccharomyces cerevisiae. Yeast, 2004. 21(1): p. 1-10.
93. Carmen Herrero de, D., et al., The Role of MAPK Signal Transduction Pathways in the Response to Oxidative Stress in the Fungal Pathogen Candida albicans: Implications in Virulence. Current Protein & Peptide Science, 2010. 11(8): p. 693-703.
94. Azad, G.K., et al., The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae. FEBS Lett, 2015. 589(1): p. 59-67.
95. Hazen, K.C. and P.M. Glee, Hydrophobic cell wall protein glycosylation by the pathogenic fungus Candida albicans. Canadian Journal of Microbiology, 1994. 40(4): p. 266-272.
96. Kang, X., et al., Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun, 2018. 9(1): p. 2747.
97. Bujdáková, H., et al., Role of cell surface hydrophobicity in Candida albicans biofilm. Central European Journal of Biology, 2013. 8(3): p. 259-262.
98. Negri, M., et al., Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia, 2010. 169(3): p. 175-82.
99. Desai, J.V., A.P. Mitchell, and D.R. Andes, Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harbor perspectives in medicine, 2014. 4(10): p. a019729.
100. Nett, J., et al., Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance. Antimicrobial Agents and Chemotherapy, 2007. 51(2): p. 510.
101. Chen, H.F. and C.Y. Lan, Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One, 2015. 10(6): p. e0129903.
102. Gillum, A.M., E.Y.H. Tsay, and D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet, 1984. 198: p. 179-82.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *