帳號:guest(18.191.181.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程品文
作者(外文):Cheng, Pin-Wen
論文名稱(中文):人類野生型LRRK2和Tau在果蠅帕金森疾病模型中的分子機制
論文名稱(外文):The molecular mechanism of human wild type LRRK2 and Tau in Drosophila Parkinson’s Disease model
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):林玉俊
汪宏達
口試委員(外文):Lin, Yu-Chun
Wang, Homg-Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:106080512
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:59
中文關鍵詞:帕金森氏症過度磷酸化低磷酸化神經纖維纏結狀結構
外文關鍵詞:Parkinson’s diseasewild-type LRRK2LRRK2G2019SAKTForkhead protein O1Fox01hyper-phosphorylatedypo-phosphorylatedneurofibrillary tangle-like structuresPD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
全基因組關聯研究表明,許多異常蛋白參與多種神經退化性疾病,包括帕金森氏症(Parkinson’s disease, PD),阿茲海默症(Alzheimer’s disease, AD),肌萎縮側索硬化症(Amyotrophic lateral sclerosis, ALS),亨丁頓舞蹈症(Huntington’s disease, HD)和額顳葉變性(frontotemporal lobar degeneration)。相關病理學研究檢測到患者大腦組織中的異常蛋白質聚集或堆積《例如: 與PD相關的富含亮氨酸的重複激酶2(LRRK2)突變,以及與AD和PD相關的Tau突變》。近期的研究還表明了PD患者大腦組織中LRRK2和Tau的差異突變。之前的一項研究採用果蠅模型來表達wild-type LRRK2或LRRK2G2019S突變,並發現果蠅複眼組織中的神經變性;還表明野生型LRRK2可以誘導與PD相關的神經變性。另一項研究也揭示了Tau H1單倍型與PD的風險增加有關,並且還表明了Tau表達的升高可能透過遺傳“獲得功能”機制增加PD的風險。然而,Tau和wild-type LRRK2在PD中的作用機制尚不完全清楚。在這項研究中,我們研究了Tau和wild-type LRRK2在果蠅PD模型中的分子機制。首先,我們使用果蠅模型系統在神經元中單獨穩定表達單獨的Tau,單獨的wild-type LRRK2和Tau與LRRK2共同表達,並使用Western blot來確認蛋白質水平。 Western blot分析表明,我們的模型在神經元中表達了Tau和LRRK2蛋白。其次,我們在果蠅多巴胺神經元中(DA neurons)表達了Tau,並發現這將觸發DA神經元中含有與年齡依賴性的神經纖維纏結狀結構。我們使用Western blot分析DA神經元也顯示類似的結果。令人驚訝的是,與普遍認為高度磷酸化的tau可能增加毒性;相反地,Tau的聚集在表達低磷酸化修飾TauAP的DA神經元中發現。第三,我們在果蠅模型系統中共同表達wild-type LRRK2和Tau,發現wild-type LRRK2將減少Tau聚集,並在DA神經元中起保護作用。Wild-type LRRK2的表達影響AKT的磷酸化(Ser473)以激活抑制凋亡的存活途徑並促進神經元存活。 AKT的磷酸化負調節FoxO1(控制凋亡相關蛋白質表達的轉錄因子),減少凋亡相關的蛋白質表達,並增加神經元存活。這些數據表明單獨Tau將誘導神經元中神經纖維纏結狀結構的聚集和形成,並且Tau和LRRK2的共同表達表明LRRK2具有強大的保護功能,其可以減少針對Tau蛋白誘導的神經纖維纏結狀結構形成、神經元死亡。這些結果提供了第一個體內證據支持LRRK2的促進存活功能,通過減少聚集和神經原纖維纏狀結構來抵抗Tau誘導的神經細胞死亡。
Numerous genome-wide association studies have indicated that many abnormal proteins are related to numerous neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and frontotemporal lobar degeneration. Concerning pathological studies discovered abnormal protein polymerization or accumulation in the patient’s brain tissue (such as leucine-rich repeat kinase 2 (LRRK2) mutations associated with PD, and Tau mutations are related to PD and Alzheimer’s disease). Recent studies also showed differential mutations of Tau and LRRK2 in PD patient’s brain tissues. A previous study used a Drosophila model to express wild-type LRRK2 or LRRK2G2019S mutation, and discovered neurodegeneration in Drosophila eyes’ tissues; also revealing that wild-type LRRK2 can induce neurodegeneration, which is associated with PD. Another study indicates that the Tau H1 haplotype is related to an enhanced risk of PD, and also indicates that the expression of Tau may enhance the risk of PD via a genetically gain-of-function mechanism. However, the mechanism of wild-type LRRK2 and Tau in PD is still unclear. In this study, we explored the molecular mechanism of wild-type LRRK2 and Tau in the Drosophila PD model. First, we used the Drosophila model system to stably express Tau alone, wild-type LRRK2 alone and Tau with LRRK2 together in neurons and used western blot to confirm the protein level. The western blot analysis indicated that our model has the expression of Tau and LRRK2 protein in the neuron. Second, we expressed Tau in Drosophila DA neurons and found that this triggered the age-dependent formation of Tau containing neurofibrillary tangle-like structures in DA neurons. We used western blot analysis and also showed a similar result in DA neurons. Amazingly, the opposite of a common belief that hyper-phosphorylated tau could intensify toxicity, the rising expression of Tau is discovered in DA neurons expressing the modified hypo-phosphorylated TauAP. Third, we co-expressed Tau and wild-type LRRK2 together in the Drosophila model system and discovered that the wild-type LRRK2 reduces the Tau aggregation with protective effects in DA neuron. These data indicate that Tau alone leads to the formation and aggregation of neurofibrillary tangle-like structures in neurons and co-expression of Tau and LRRK2 which suggests that LRRK2 has a powerful protective function, which can reduce neurofibrillary tangle-like structure formations against Tau protein-induced neuron death. The expression of wild-type LRRK2 affected the phosphorylation of AKT (Serine 473) to activate a survival pathway to promote neuron survival and resist apoptosis. Phosphorylation of AKT negatively regulates Forkhead protein O1 (FoxO1), a transcription factor dominating the expression of apoptosis-associated proteins, decreasing apoptosis-related protein expression, and improving neuron survival. These results provide the first evidence supporting the pro-survival function of LRRK2 in vivo, which decreases aggregation and neurofibrillary tangle-like structures to against Tau induced neuron death.
Table of Contents
中文摘要 2
Abstract 4
致謝(Acknowledgements) 6
Table of Contents 7
Introduction 10
Parkinson’s disease (PD) 10
Biochemical and physiological of Tau protein 10
Biochemical and physiological of leucine-rich repeat kinase 2 (LRRK2) 11
Tau and mutation LRRK2 are associated with PD 12
PD and MAPK signaling pathway 13
PI3K/AKT signaling pathway 14
Experimental procedures 16
Western blotting 16
Sarkosyl insolubility assay 16
Fly strains and epistasis analysis 17
Immunohistochemistry and confocal images 17
Scanning electron microscopy (SEM) 17
Statistical analysis 18
Results 19
Western blotting analysis of human Tau and wild-type LRRK2 expressed in Drosophila model system 19
LRRK2 has a protective effect to prevent tau-induced neurodegeneration in DA neuron and Drosophila eyes. 19
Formation of the abnormal oligomeric tau and tangle-like pathology in DA neurons 20
The high molecular weight of tau results from not only hyper-phosphorylation but also hypo-phosphorylation tau accumulation 22
Overexpression of tau induces apoptosis in neuron cells 23
LRRK2 can inhibit Tau protein accumulation into high molecular weight complex in neuron cells 24
LRRK2 increases survival but not through the ERK pathway 24
LRRK2 increases cell survival by increasing phosphorylation and inhibiting the FoxO1 activity 26
Discussion 29
Figures 34
Figure 1. Western blotting analysis of human wild-type LRRK2 and Tau expressed in Drosophila model system. 34
Figure 2. LRRK2 could prevent the tau induce neuro-degeneration in Drosophila eyes. 35
Figure 3. LRRK2 has a protectine effect to prevent tau-induced neurodegeneration in DA neuron. 36
Figure 4. Expression of htau can lead to tau protein filamentous aggregate structures in Drosophila brains. 37
Figure 5. The high molecular weight tau proteins come from the hypophosphorylation htau. 38
Figure 6. Overexpression of Tau induces apoptosis in neuron cells. 39
Figure 7. Overexpression of Tau promotes the high molecular weight formation. 40
Figure 8. LRRK2WT can protect cells regarding total levels but the high molecular weight of tau but LRRK2G2019S cannot. 41
Figure 9. The expression of human LRRK2 does not affect ERK phosphorylation levels. 42
Figure 10. The expression of human wild-type LRRK2 can specifically promote AKT phosphorylation at Ser473. 43
Figure 11. Human wild-type LRRK2 does not function through PI3K to promote AKT phosphorylation at 473s. 44
Figure 12. Human wild-type LRRK2 decreases protein expression level of Fox01 45
Figure 13. Human wild-type LRRK2 promotes cell survival, but not through the AKT-mTOR pathway. 46
Figure 14. The model of wild-type LRRK2 protective functions. 47
References 48
Alessi, DR. (2001). Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem. Soc. Trans. 29, 1-14

Alessi, D.R., James. S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., and Cohen. P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase phosphorylates and activates protein kinase Balpha. Curr. Biol. 7,261— 269.

Alonso, A.C., Grundke-Iqbal, I., and Iqbal, K. (1996). Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and dissembles microtubules. Nat. Med. 2, 783-787.

Alonso. A., Zaidi. T., Novak. M., Grundke-Iqbal, I., and Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments straight filaments. Proc. Natl. Acad. Sci. U.S.a. 98, 6923-6928.

Anand. V.S., and Braithwaite, S.P. (2009). LRRK2 in Parkinson's disease: biochemical functions. Febs J. 276 6428-6435.

Aena, Ci., Gelmetti, V., Torosantucci, L., Vignone, D., Lamorte, G., De Rosa, P., Cilia. E., Jonas. E.A., and Valente. E.M. (2013). PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Difter. 20, 920-930.

Berwick, D.C., and Harvey. K. (2011). LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol. 21, 257-265.

Binder. L.I., Guillozet-Bongaarts. A.L., Garcia-Sierra, F., and Berry, R.W. (2005). Tau, tangles, and Alzheimer's disease. Biochim. Biophys. Acta 1739 216-223.

Bonni. A., Brunet. A., West. A.E., Dana, S.R., Takasu, M.A., and Greenberg, M.E. (1909). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362.

Brazil. D.P., and Hemmings. B.A. (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657-664.

Brown, M.D., and Sacks. D.B. (2009). Protein scaffolds in MAP kinase signaling: Cell. Signal. 21, 462-469.

Cantley, L.C., and Neel. B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT Pathway. Proc. Natl. Acad. Sci. U.S.a. 96, 4240-4245.

Carballo-Carbajal, I., Weber-Endress. S., Rovelli, G., Chan, D., Wolozin, B., Klein, Patenge. N., Gasser. T., and Kahle. P.J. (2010). Leucine-rich repeat kinase induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell. Signal. 22, 811-827.

Carpten, J.D., Faber. A.L., Horn, C., Donoho, G.P., Briggs, S.L., Moses, Robbins, C.M., Hostetter, G., Boguslawski, S., Moses, T.Y., Savage, S., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439-444.

Chang, H.Y., Grygoruk, A., Brooks, E.S., Ackerson, L.C., Maidment, N.T., Bainton, R.J. and Krantz, D.E. (2006) Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine. Mol. Psychiatr., 11, 99–113.

Chang, Y.-C., Hung. W.-T., Chang, Y.-C., Chang, H.C., Wu, C.-L., Chiang, A.-S., Jackson, G.R., and Sang. T.K. (2011). Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet. 7, el001288.

Chen, J., Rusnak, M., Lombroso, P.J., and Sidhu, A. (2009). Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur. J. Neurosci. 29, 287-306.

Chen, P., Nordstrom, W., Gish. B., and Abrams, J.M. (1996). grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773-1782.

Cross, D.A., Alessi, D.R., Cohen, P. Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.

Davie. C.A. (2008). A review of Parkinson's disease. Br. Med. Bull. 86, 109-127.

Di Fonzo. A., Wu-Chou, Y.-H., Lu, C.-S., van Doeselaar, M., Simons, E.J., Rohé, C.F., Chane, H.-C., Chen, R.-S., Weng, Vanacore, N., et al. (2006). A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics 7,133-138.

Dorval. V., and Hébert, S.S. (2012). LRRK2 in Transcription and Translation Regulation: Relevance for Parkinson's Disease. Front Neurol 3,12.

Du. K., and Montminy, M. (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377-32379.

Edwards, T.L., Scott, W.K., Almonte, C., Burt, A., Powell, E.H., Beecham, G.W., Wang. L., Zűchner, S., Konidari, I., Wang, G., et al. (2010). Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97-109.

Eldar-Finkelman, H., Seger, R., Vandenheede, J.R., and Krebs, E.G. (1995). Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J. Biol. Chem. 270, 987-990.

Farrer. NI Skipper, L., Berg, M., Bisceglio, G., Hanson, M. Hardy, J. Adam, A., Gwinn-Hardy, K., and Aasly, J. (2002). The tan H1 haplotype is associated with Parkinson's disease in the Norwegian population. Neurosci. Lett. 322, 83-86.

Feng, J., Park, j., Cron, P., Hess, D., and Hemmings, B.A. (2004). Identification of a ip13/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189-41196.

Ferrer, I., Blanco, R., Carmona, M., Puig, B. Barrachina., M., GÓmez, C., and Ambrosio, S. (2001). Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK, JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies. J Neural Transm (Vienna) 108, 1183~1396.

Franke, S., and Collen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16.

Franke, T.F., Kaplan, D.R., and Cantley, L.C. (1997). PI3K: downstream AKTion blocks apoptosis. Cell 88, 435-437.

Fulga, T.A., Elson-Schwab, I., Khurana, V., Steinhilb, M.L., Spires, T.L., Hyman, B.T., and Feany, M.B. (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9, 139-148.

Gloeckner, C.J., Schumacher, A., Boldt, K., and Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109, 959-968.

Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl.,Acad. Sci. U.S.a. 83, 4913-4917.

Guertin, D.A., Stevens, D.M., Thoreen, C.C., Buds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., arid Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, ri6ior, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859-871.

Hajduch, E., Litherland, G.J., and Hundal, H.S. (2001). Protein kinase B (PKB/Akt)-- a key regulator of glucose transport? FEBS. 492, 199-203.

Hanger, D.P., Anderton, B.H., and Noble, W. (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15, 112-119.

Hardy, J., Cookson, M.R., and Singleton, A. (2003). Genes and parkinsonism. Lancet Neurol 2, 221-228.

Hsu, C.H., Chan, D., and Wolozin, B. (2010a). LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins. Neurodegener Dis 7,68-75.

Hsu, C.H., Chan, D., Greggio, E., Saha, S., Guillily, M.D., Ferree, A., Raghavan, K., Shen, G.C., Segal, L., Ryu, H., et al. (2010b). MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 1593-1604.

Illarioshkin, S.N., Shadrina, M.I., Slominsky, P.A., Bespalova, E.V., Zagorovskaya, T.B., Bagyeva, G.K., Markova, E.D., Limborska, S.A., and Ivanova-Smolenskaya, I.A. (2007). A common leucine-rich repeat kinase 2 gene mutation in familial and sporadic Parkinson's disease in Russia. Eur. J. Neurol. 14, 413-417.

Imai, Y., Gehrke, S., Wang, H.-Q., Takahashi, R., Hasegawa, K., Oota, E., and Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. Embo J. 27, 2432-2443.

Jacobs, K.M., Bhave, S.R., Ferraro, D.J., Jaboin, J.J., Hallahan, D.E., and Thotala, D. (2012). GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012, 930710-930711.

Johnson, B.N., Berger, A.K., Cortese, G.P., and LaVoie, M.J. (2012). The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. U.S.a. 109, 6283-6288.

Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H., and Mouradian, M.M. (2005). Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. U.S.a. 102, 9691-9696.

Kachergus, J., Mata, I.F., Hulihan, M., Taylor, J.P., Lincoln, S., Aasly, J., Gibson, J.M., Ross, O.A., Lynch, T., Wiley, J., et al. (2005). Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672-680.

Kanao, T., Venderova, K., Park, D.S., Unterman, T., Lu, B., and Imai, Y. (2010). Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum. Mol. Genet. 19, 3747-3758.

Kawakami, F., Shimada, N., Ohta, E., Kagiya. G., Kawashima, R., Maekawa, T., Maruyama, H., and Ichikawa, T, (2014) Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen, synthase kinase-313. Febs J. 281, 3-13.

Kawakami, F. Yabata, T. Oka, E., `Ma'61(ami, T., Shimada, N. Suzuki, M. Maruyama, H., Ichikawa, T., and Obata, F. (2012). LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS ONE 7, e30834.

Khurana V., Lu Y., Steinhilb M.L., Oldham S., Shulman J.M., Feany M.B. (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol. vol. 16 ,230-241.

Klein, R.L., Lin, W.-L., Dickson, D.W., Lewis, J., Hutton, M., Duff, K., Meyer, E.M., and King, M.A. (2004). Rapid neurofibrillary tangle formation after localized gene transfer of mutated tau. Am. J. Pathol. 164, 347-353.

Koushika, S.P., Soller, M., and White, K. (2000). The neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein. Mol. Cell. Biol. 20, 1836-1845.

Kwok, J.B.J., Teber, E.T., Loy, C., Hallupp, M., Nicholson, G., Mellick, G.D., Buchanan, D.D., Silburn, P.A., and Schofield, P.R. (2004). Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol. 55, 329-334.

Lee, S.B., Kim, W., Lee, S., and Chung, J. (2007). Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358, 534-539.

Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. (2001). Annu Rev Neurosci. 24:1121–1159.

Lei, P., Ayton, S., Finkelstein, D.I., Adlard, P.A., Masters, C.L., and Bush, A.I. (2010). Tau protein: relevance to Parkinson's disease. Int. J. Biochem. Cell Biol. 42, 1775-1778.

Lewis, T.L., Courchet, J., and Polleux, F. (2013). Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol. 202, 837-848.

Li, T., Yang, D., Sushchky, S., Liu, Z., and Smith, W.W. (2011). Models for LRRK2-Linked Parkinsonism. Parkinsons Dis 2011, 942412-942416.

Li, W., and Lee, M.K. (2005). Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity. J. Neurochem. 93, 1542-1550.

Lin, C.-H., Tsai, P.-I., Wu, R.-M., and Chien, C.-T. (2010). LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3β. J. Neurosci. 30, 13138-13149.

Lisbin, M.J., Qiu, J., and White, K. (2001). The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev. 15, 2546-2561.
Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., et al. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. U.S.a. 105, 2693-2698

Loberg, R.D., Vesely, E., and Brosius, F.C. (2002). Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glu66se transport and metabolism. J. Biol. Chem. 277, 41667-41673.

Luk, C., Giovannoni, G., Williams, D.R., Lees, A.J., and de Silva, R. (2009). Development of a sensitive ELISA for quantification of three- and four-repeat tau isoforms in tauopathies. J. Neurosci. Methods 180, 34-42.

Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O'Brien, P., Trojanowski, J.Q., and Lee, V.M.-Y. (2012). Pathological a-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949-953.

Luzon-Toro, B., Rubio de la Torre, E., Delgado, A., Perez-Tur, J., and Hilfiker, S. (2007). Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Hum. Mol. Genet. 16, 2031-2039.

Mandelkow, E.-M., and Mandelkow, E. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2, a006247—a006247.

Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.

Maraganore, D.M., de Andrade, M., Lesnick, T.G., Strain, K.J., Farrer, M.J., Rocca, W.A., Pant, P.V.K., Frazer, K.A., Cox, D.R., and Ballinger, D.G. (2005). High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77, 685-693.

Marin, I., van Egmond, W.N., and van Haastert, P.J.M. (2008). The Roco protein family: a functional perspective. Faseb J. 22, 3103-3110.

Martin, I., Kim, J.W., Dawson, V.L., and Dawson, T.M. (2014). LRRK2 pathobiology in Parkinson's disease. J. Neurochem. 131, 554-565.
Martin, L., Latypova, X., and Terro, F. (2011). Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58, 458-471.

Mata, I.F., Wedemeyer, W.J., Farrer, M.J., Taylor, J.P., and Gallo, K.A. (2006). LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 29, 286-293.

Miyamoto, T., Stein, L., Thomas, R., Djukic, B., Taneja, P., Knox, J., Vossel, K., and Mucke, L. (2017). Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 12, 41.

Ohta, E., Kawakami, F., Kubo, M., and Obata, F. (2011). LRRK2 directly phosphorylates Aktl as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations. FEBS Lett. 585, 2165-2170.

Ohta, E., Nihira, T., Uchino, A., Jniaizufni, Y., Okada, Y., Akamatsu, W., Takahashi, K., Hayakawa, H., Nagai, M,, Ohyama, M., et al. (2015). 12020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Hum. Mol. Genet. 24, 4879-4900.

Plowey, E.D., Cherra, S.J., Liu, Y.-J., and Chu. C.T. (2008). Role of autophagy in G2019S-LRRK2-associated neUrite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048-1056.

Qian, W., Shi, J., Yin, X., Iqbal, K., Grundke-Iqbal, I., Gong, C.-X., and Liu, F. (2010). PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J. Alzheimers Dis. 19, 1221-1229.

Ren, Y., Jiang, H., Yang, F., Nakaso, K., and Feng, J. (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J. Biol. Chem. 284, 4009-4017.

Rideout, H.J., and Stefanis, L. (2014). The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson's disease. Neurochem. Res. 39, 576-592.

Rodriguez-Martin, T., Cuchillo-Ibanez, I., Noble, W., Nyenya, F., Anderton, B.H., and Hanger, D.P. (2013). Tau phosphorylation affects its axonal transport and degradation. Neurobiol. Aging 34,2146-2157.

Rodriguez-Martin, T., Pooler, A.M., Lau, D.H.W., Morotz, G.M., De Vos, Gilley, J., Coleman, M.P., and Hanger, D.P. (2016). Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301 L tau knockin neurons. Neurobiol. Dis. 85, 1-10.

Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24-26.

Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307,1098-1101.

Sheng, Z., Zhang, S., Bustos, D., Kleinheinz, T., Le Pichon, C.E., Dominguez, S.L., Solanoy, H.O., Drummond, J., Zhang, X., Ding, X., et al. (2012). Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4, 164ral61-164ra161.

Simon-Sanchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S.W., Hernandez, D.G., et al. (2009). Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308-1312.

Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). alpha-Synuclein locus triplication causes Parkinson's disease, Science 302, 841-841.

Skibinski, G., Nakamura, K., Cookson, M.R., and Finkbeiner, S. (2014). Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J. Neurosci. 34, 418-433.

Soller, M., and White, K. (2003). ELAV inhibits 3'-end processing to promote neural splicing for ewg pre-mRNA. Genes Dev. 17,2526-2538.

Soller, M., and White, K. (2005). ELAV,multimerizes on conserved AU4-6 motifs important for ewg splicing regulation. Mol. Cell. Biol. 25, 7580-7591.

Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71.

Song, L., De Sarno, P., and Jape, R.S. (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44701-44708.

Steinhilb, M.L., Dias-Santagata, D., Mulkearns, E.E., Shulman, J.M., Biernat, J., Mandelkow, E.-M., and Feany, M.B. (2007). SIP and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J. Neurosci. Res. 85, 1271-1278.

Stefansson H, Helgason A, Thorleifsson G, Stefansson K (2005). A common inversion under selection in Europeans. Nat Genet. 2005 Feb;37(2):129-37.

Subramaniam, S., and Unsicker, K. (2010). ERK and cell death: ERK1/2 in neuronal death. Febs J. 277, 22-29.

Thomas, B., and Beal, M.F. (2007). Parkinson's disease. Hum. Mal. Genet. 16 Spec No. 2, R183—R194.

Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R.J., and Shen, J. (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. U.S.a. 107, 9879-9884.

Ujiie, S., Hatano, T., Kubo, Imai, S., Sato, S., Uchihara, T., Yagishita, S., Hasegawa, K., Kowa, H., Sakai, F., et al. (2012). LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat. Disord. 18, 819-823.

van Swieten, J., and Spillantini, M.G. (2007). Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol. 17, 63-73.

Vanhaesebroeck, B., and Alessi, D.R. (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346 Pt 3,561-576.

Varkey, J., Chen, P., Jemmerson, R., and Abrams, J.M. (1999). Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol. 144, 701-710.
Violet, M., Delattre, L., Tardivel, M., Sultan, A., Chauderlier, A., Caillierez, R., Talahari, S., Nesslany, F., Lefebvre, B., Bonnefoy, E., et al. (2014). A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8, 84.

Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S.G., Perry, G., Casadesus, G., and Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21, 1931-1944.

Watcharasit, P., Bijur, G.N, Zmijewski, J.W. Song, L., Zmijewska, A., Chen, X., Johnson, G.V.W., and Jope, R.S. (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. U.S.a. 99, 7951-7955.

West, A.B., Moore, D.J., Biskup, S., Irugayeliko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U.S.a. 102, 16842-16847.

West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K.-L., Dawson, V.L., et al. (2007). Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223-232.

Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, Brayne C, Kolachana BS, Weinberger DR, Sawcer SJ, Barker RA. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the Campaign cohort. Brain. 132:2958–2969.

Wood, J.G., Mirra, S.S., Pollock, N.J., and Binder, L.I. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. U.S.a. 83, 4040-4043.

Wu, T.-H., Lu, Y.-N., Chuang, C.-L., Wu, C.-L., Chiang, A.-S., Krantz, D.E., and Chang, H.-Y. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol. 125, 711-725.

Zabetian, C.P., Huffer, C.M., Factor, S.A., Nutt, J.G., Higgins, D.S., Griffith, A., Roberts, J.W., Leis, B.C., Kay, D.M., Yearout, D., et al. (2007). Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease. Ann. Neurol. 62, 137-144.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *