帳號:guest(3.145.8.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許竣閔
作者(外文):Hsu, Chun-Min
論文名稱(中文):抗菌胜肽LL-37誘發白色念珠菌Sfp1調控之細胞壁和內質網壓力反應
論文名稱(外文):The antimicrobial peptide LL-37 induces Sfp1-mediated cell wall and endoplasmic reticulum stress response in Candida albicans
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung-Yu
口試委員(中文):高茂傑
陳穎練
口試委員(外文):Kao, Mou-Chieh
Chen, Ying-Lien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:106080507
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:65
中文關鍵詞:白色念珠菌Sfp1細胞壁壓力內質網壓力
外文關鍵詞:Candida albicansSfp1cell wall stressER stress
相關次數:
  • 推薦推薦:1
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
白色念珠菌是人類最重要的真菌病原體之一,共生在健康人體中但是會伺機性造成局部的黏膜感染,甚至致命的全身侵入性感染,特別是在免疫功能低下的患者中。抗菌胜肽在宿主先天性免疫系統中扮演重要角色,在我們實驗室先前的研究顯示人類抗菌胜肽LL-37會和白色念珠菌的細胞壁結合並改變細胞壁完整性,進而影響白色念珠菌的貼附能力。另外,我們的初步實驗也發現白色念珠菌的轉錄因子Sfp1參與調控生物膜的形成及細胞壁完整性。依據上述結果Sfp1是否有參與白色念珠菌對於LL-37的壓力反應,並且其分子機制為何,是本研究的主要目標。首先,與野生型及SFP1基因回復型菌株相比,我們發現SFP1基因剔除菌株具有較高的細胞壁醣類含量,並且對細胞壁干擾劑具有較高的抗性。另外, 經LL-37處理後,雖然SFP1基因剔除菌株的細胞壁完整性和內質網壓力反應相關基因沒有顯著改變,然而與野生型及SFP1基因回復型菌株相比,此SFP1基因剔除菌株表現出比較低的未折疊蛋白反應(此反應已知與ER壓力相關),並且累積較低的細胞內ROS及有較高的存活率等特性。總結來說,本研究結果揭示白色念珠菌對抗菌胜肽LL-37反應的新機制,並說明了抗菌胜肽在未來發展新抗真菌藥物的潛力。
Candida albicans is a commensal in healthy individuals but can become pathogenic particularly in the immunocompromised patients. C. albicans is responsible for a wide range of infections, including superficial and life-threatening systemic infections. Antimicrobial peptides (AMPs) play an important role in the host innate immune system. Our previous studies showed that the AMP LL-37 binds to the cell wall and alters the cell wall integrity (CWI) of C. albicans. Moreover, our preliminary data indicated that the transcription factor Sfp1 involves in maintaining CWI. These results raise a possibility that Sfp1 may participate in cell response to LL-37. In this study, therefore, we aimed to determine the role of Sfp1 and to reveal the possible mechanisms in cell response to LL-37. Our results showed that the sfp1-deleted mutant had higher cell wall glycan contents and was more resistant to cell wall-disrupting agents compared to the control cells with LL-37 treatment. In addition, although CWI and endoplasmic reticulum (ER) stress-responsive genes did not show significant difference in the sfp1-deleted mutant, this mutant did exhibit a lower unfolded protein response (related to the ER stress response), intracellular ROS accumulation and higher viability with the treatment of LL-37, compared to the controls. Together, our findings reveal a novel mechanism for C. albicans response to LL-37 and demonstrate the potential use of AMPs in the future development of new antifungal agents.
中文摘要 I
Abstract II
致謝辭 III
Table of contents IV
1. Introduction 1
1.1 Candida albicans infection and its risk factors 2
1.2 Virulence factors and pathogenesis of C. albicans 3
1.3 Antimicrobial peptides and LL-37 4
1.4 Cell wall component and cell wall integrity in C. albicans 7
1.5 Endoplasmic reticulum stress, unfolded protein response and cell wall 8
1.6 Transcription factor Sfp1 in C. albicans 10
1.7 Aim of this study 11
2. Materials and Methods 12
2.1 Peptide synthesis 13
2.2 Strains and growth condition 13
2.3 Construction of ERO1-FLAG tagging strains 13
2.4 Protein extraction and quantification 14
2.5 Cell susceptibility to LL-37 15
2.6 Intracellular reactive oxygen species (ROS) accumulation 16
2.7 Lipid peroxidation assay 16
2.8 Total RNA isolation and reverse transcription (RT) real-time quantitative PCR (qPCR) 16
2.9 Cell susceptibility to cell wall-perturbing agents 17
2.10 Determination of the carbohydrate content of the cell wall 18
2.11 Assay for Mkc1 phosphorylation 19
2.12 Protein secretion assay 20
2.13 HAC1 mRNA splicing assay 20
2.14 Detection of the Ero1 oxidation state 21
2.15 Statistical analysis 21
3. Results 22
3.1 Sfp1 is involved in cell susceptibility to LL-37 23
3.2 Deletion of SFP1 alters cell wall composition and affects cell tolerance to LL-37 23
3.3 Deletion of SFP1 enhances clearance of LL-37-induced reactive oxygen species (ROS) 25
3.4 LL-37-induced endoplasmic reticulum (ER) dysfunction 27
3.5 Activation of the unfolded protein response (UPR) pathway by LL-37 28
3.6 LL-37 impairs ER redox homeostasis 29
3.7 LL-37 and the calcineurin inhibitor FK506 have a combinatorial effect against C. albicans 30
4. Discussion 32
5. References 37
Tables 49
Table 1. Strains used in this study 49
Table 2. Oligonucleotides used in this study 50
Table 3. MICs of LL-37 against C. albicans 51
Figures 52
Figure 1. The sfp1-deleted mutant has a higher tolerance to LL-37 comparing to the wild-type and the SFP1-reintegrated strains 52
Figure 2. The sfp1-deleted mutant with LL-37 treatment is more tolerant to cell wall-disrupting agents than the control strains 53
Figure 3. The levels of individual cell wall carbohydrate in cells treated with or without LL-37. Cells were treated with or without LL-37 (8 μg/ml) for 30 min, and cell wall glucan (A), mannan (B) and chitin (C) were measured using a high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The results are expressed as the mean ± standard deviation of four independent assays. *, p<0.05. 54
Figure 4. The level of Mkc1 phosphorylation is detected in cells treated with or without LL-37 55
Figure 5. Detection of intracellular ROS accumulation and lipid peroxidation in various strains treated with or without LL-37 56
Figure 6. Investigation of ER functions possibly affected by LL-37 and deletion of SFP1 58
Figure 7. LL-37 treatment induces splicing of the transcription factor gene HAC1 mRNA 59
Figure 8. LL-37 induces more UPR activation in the wild-type than the sfp1-deleted mutant 60
Figure 9. LL-37 enhances more Ero1 oxidation in the wild-type than the sfp1-deleted mutant 61
Figure 10. LL-37 and FK506 have a combinatorial effect against C. albicans 62
Figure 11. A simple model for C. albicans to maintain CWI & response to LL-37 63
Supplement Figures 64
Figure S1. The wild-type and the SFP1-reintegrated strains show an increased chitin content of the cell wall after LL-37 treatment 64
Figure S2. The sfp1-deleted mutant exhibits a higher expression changes for the antioxidant genes in cells treated with LL-37 65

1. Bongomin, F., et al., Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J Fungi (Basel), 2017. 3(4).
2. Ruping, M.J., J.J. Vehreschild, and O.A. Cornely, Patients at High Risk of Invasive Fungal Infections When and How to Treat. Drugs, 2008. 68(14): p. 1941-62.
3. Perlroth, J., B. Choi, and B. Spellberg, Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007. 45(4): p. 321-46.
4. Yapar, N., Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag, 2014. 10: p. 95-105.
5. Ruan, S.Y. and P.R. Hsueh, Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc, 2009. 108(6): p. 443-51.
6. Tan, B.H., et al., Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clin Microbiol Infect, 2015. 21(10): p. 946-53.
7. Hebecker, B., et al., Pathogenicity mechanisms and host response during oral Candida albicans infections. Expert. Rev. Anti. Infect. Ther., 2014. 12(7): p. 867-79.
8. Bouza, E. and P. Muñoz, Epidemiology of candidemia in intensive care units. Int J Antimicrob Agents, 2008. 32(2): p. 87-91.
9. Playford, E.G., et al., Candidemia in nonneutropenic critically ill patients: risk factors for non-albicans Candida spp. Crit Care Med, 2008. 36(7): p. 2034-39.
10. Leroy, O., et al., Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med, 2009. 37(5): p. 1612-1618.
11. Anwar, K.P., A. Malik, and K.H. Subhan, Profile of candidiasis in HIV infected patients. Iran J Microbiol, 2012. 4(4): p. 204-09.
12. Horn, D.L., et al., Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis, 2009. 48(12): p. 1695-703.
13. Jerez Puebla, L.E., Fungal Infections in Immunosuppressed Patients, in Immunodeficiency. 2012.
14. Bassetti, M., et al., Incidence, risk factors, and predictors of outcome of candidemia. Survey in 2 Italian university hospitals. Diagn Microbiol Infect Dis, 2007. 58(3): p. 325-31.
15. Bassetti, M., et al., A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. Intensive Care Med, 2014. 40(6): p. 839-45.
16. Cortés, J.A. and I.F. Corrales, Invasive Candidiasis Epidemiology and Risk Factors. Immunodeficiency, 2018.
17. Charles, P.E., et al., Candida spp. colonization significance in critically ill medical patients: a prospective study. Intensive Care Med, 2005. 31(3): p. 393-400.
18. Nikolaou, E., et al., Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol, 2009. 9: p. 44.
19. Cheng, G., et al., Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun, 2005. 73(3): p. 1656-63.
20. Zakikhany, K., et al., In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol, 2007. 9(12): p. 2938-54.
21. Wachtler, B., et al., From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One, 2011. 6(2): p. e17046.
22. Staab, J.F., et al., Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 1999. 283: p. 1535-38.
23. Sundstrom, P., J.E. Cutler, and J.F. Staab, Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun, 2002. 70(6): p. 3281-3.
24. Park, H., et al., Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol, 2005. 7(4): p. 499-510.
25. Wachtler, B., et al., Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One, 2012. 7(5): p. e36952.
26. Hube, B., et al., Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun, 1997. 65(9): p. 3529–38.
27. Leidich, S.D., et al., Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem, 1998. 273(40): p. 26078-86.
28. Gacser, A., et al., Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun, 2007. 75(10): p. 4710-8.
29. Haney, E.F. and R.E. Hancock, Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 2013. 100(6): p. 572-83.
30. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
31. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clin Microbiol Rev, 2006. 19(3): p. 491-511.
32. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
33. Wang, G., X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res, 2016. 44(D1): p. D1087-93.
34. Peschel, A. and H.G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 2006. 4(7): p. 529-36.
35. Nakatsuji, T. and R.L. Gallo, Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol, 2012. 132(3 Pt 2): p. 887-95.
36. Zhao, C., I. Wang, and R.I. Lehrer, Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett., 1996. 396: p. 319-22.
37. Doss, M., et al., Human defensins and LL-37 in mucosal immunity. J Leukoc Biol, 2010. 87(1): p. 79-92.
38. Ahmad, M., et al., Immunocytochemical Localization of Histatins in Human Salivary Glands. J Histochem Cytochem, 2004. 52(3): p. 361-70.
39. Tsai, H. and L.A. Bobek, Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta, 1997. 1336: p. 367-69.
40. Helmerhorst, E.J., et al., Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother, 1999. 43(3): p. 702-4.
41. Rothstein, D.M., et al., Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother, 2001. 45(5): p. 1367-73.
42. Lin, G.Y., et al., The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans. Antimicrob Agents Chemother, 2016. 60(10): p. 6369-73.
43. Durr, U.H., U.S. Sudheendra, and A. Ramamoorthy, LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1408-25.
44. Agerberth, B., et al., FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. U. S. A. , 1995. 92: p. 195-9.
45. Kosciuczuk, E.M., et al., Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep, 2012. 39(12): p. 10957-70.
46. Khurshid, Z., et al., Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules, 2017. 7(4).
47. Larrick, J.W., et al., Structural, functional analysis and localization of the human CAP18 gene. FEBS Lett, 1996. 398: p. 74-80.
48. Sorensen, O.E., et al., Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 2001. 97(12): p. 3951-59.
49. Bals, R., et al., Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest, 1999. 103(8): p. 1113–7.
50. Islam, D., et al., Downregulation of bactericidal peptides in enteric infections - A novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med, 2001. 7(2): p. 180-5.
51. Bergman, P., et al., Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol, 2005. 7(7): p. 1009-17.
52. Samuelsen, O., et al., Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett, 2005. 579(16): p. 3421-6.
53. Lopez-Garcia, B., et al., Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol, 2005. 125(1): p. 108-15.
54. Tsai, P.W., et al., Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One, 2011. 6(3): p. e17755.
55. Lin, M.F., et al., OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii. PLoS One, 2015. 10(10): p. e0141107.
56. Netea, M.G., et al., An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol, 2008. 6(1): p. 67-78.
57. Romani, L., Immunity to fungal infections. Nat Rev Immunol, 2011. 11(4): p. 275-88.
58. Luo, G., et al., Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis, 2010. 201(11): p. 1718-28.
59. Liu, Y. and S.G. Filler, Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell, 2011. 10(2): p. 168-73.
60. Ernst, J.F. and J. Pla, Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol, 2011. 301(5): p. 378-83.
61. Walker, L.A., N.A. Gow, and C.A. Munro, Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother, 2013. 57(1): p. 146-54.
62. Gantner, B.N., R.M. Simmons, and D.M. Underhill, Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J, 2005. 24(6): p. 1277-86.
63. Tsao, C.C., Y.T. Chen, and C.Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol, 2009. 46(2): p. 126-36.
64. Yeh, Y.C., H.Y. Wang, and C.Y. Lan, Candida albicans Aro1 affects cell wall integrity, biofilm formation and virulence. J Microbiol Immunol Infect, 2018.
65. Wiederhold, N.P., et al., Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother, 2005. 49(12): p. 5146-8.
66. Sorgo, A.G., et al., Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell, 2011. 10(8): p. 1071-81.
67. Walter, P. and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011. 334(6059): p. 1081-6.
68. Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-5.
69. Harding, H.P., et al., Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol, 2002. 18: p. 575-99.
70. Meusser, B., et al., ERAD - the long road to destruction. Nat. Cell Biol, 2005. 7(8): p. 766–72.
71. Patil, C. and P. Walter, Intracellular signaling from the endoplasmic reticulum to the nucleus - the unfolded protein response in yeast and mammals. Curr Opin Cell Biol, 2001. 13: p. 349–56.
72. Wu, H., B.S. Ng, and G. Thibault, Endoplasmic reticulum stress response in yeast and humans. Biosci Rep, 2014. 34(4).
73. Cox, J.S. and P. Walter, A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein Response. Cell, 1996. 87: p. 391-404.
74. Travers, K.J., et al., Functional and Genomic Analyses Reveal an Essential Coordination between the Unfolded Protein Response and ER-Associated Degradation. Cell, 2000. 101: p. 249-58.
75. Hernandez-Elvira, M., et al., The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells, 2018. 7(8).
76. Wimalasena, T.T., et al., Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol, 2008. 45(9): p. 1235-47.
77. Thomas, E., et al., The activity of RTA2, a downstream effector of the calcineurin pathway, is required during tunicamycin-induced ER stress response in Candida albicans. FEMS Yeast Res, 2015. 15(8).
78. Zhang, J., J. Heitman, and Y.L. Chen, Comparative analysis of calcineurin signaling between Candida dubliniensis and Candida albicans. Commun Integr Biol, 2012. 5(2): p. 122-6.
79. Scrimale, T., et al., The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol Biol Cell, 2009. 20(1): p. 164-75.
80. Bonilla, M. and K.W. Cunningham, Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell, 2003. 14(10): p. 4296-305.
81. Chen, Y., et al., Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res, 2005. 3(12): p. 669-77.
82. Yu, Q., et al., Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic Biol Med, 2016. 99: p. 572-583.
83. Chen, H.F. and C.Y. Lan, Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One, 2015. 10(6): p. e0129903.
84. Lee, S.Y., et al., The Transcription Factor Sfp1 Regulates the Oxidative Stress Response in Candida albicans. Microorganisms, 2019. 7(5).
85. Tsai, P.W., et al., Characterizing the role of cell-wall beta-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One, 2011. 6(6): p. e21394.
86. Tsai, P.W., et al., Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol, 2014. 52(7): p. 581-9.
87. Reuss, O., et al., The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 2004. 341: p. 119-27.
88. EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect, 2008. 14(4): p. 398-405.
89. Kwolek-Mirek, M. and R. Zadrag-Tecza, Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res, 2014. 14(7): p. 1068-79.
90. Dai, B.D., et al., Cap1p attenuates the apoptosis of Candida albicans. FEBS J, 2013. 280(11): p. 2633-43.
91. WANG, H. and J.A. JOSEPH, QUANTIFYING CELLULAR OXIDATIVE STRESS BY DICHLOROFLUORESCEIN ASSAY USING MICROPLATE READER. Free Radic Bio Med, 1999. 27: p. 612-16.
92. Hsu, P.C., C.Y. Yang, and C.Y. Lan, Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell, 2011. 10(2): p. 207-25.
93. Nailis, H., et al., Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol, 2006. 7: p. 25.
94. Hsu, P.C., et al., Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Eukaryot Cell, 2013. 12(6): p. 804-15.
95. Francois, J.M., A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc, 2006. 1(6): p. 2995-3000.
96. Plaine, A., et al., Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol, 2008. 45(10): p. 1404-14.
97. Costa-de-Oliveira, S., et al., Determination of chitin content in fungal cell wall: an alternative flow cytometric method. Cytometry A, 2013. 83(3): p. 324-8.
98. Crandall, M. and J.E.J. Edwards, Segregation of proteinase-negative mutants from heterozygous Candida albicans. J Gen Microbiol, 1987. 133: p. 2817–24.
99. Chen, Y.T., et al., Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. Eukaryot Cell, 2012. 11(2): p. 168-82.
100. Frand, A.R. and C.A. Kaiser, Ero1p Oxidizes Protein Disulfide Isomerase in a Pathway for Disulfide Bond Formation in the Endoplasmic Reticulum. Mol Cell, 1999. 4: p. 469-77.
101. Sevier, C.S., et al., Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell, 2007. 129(2): p. 333-44.
102. Ruiz-Herrera, J., et al., Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res, 2006. 6(1): p. 14-29.
103. Ram, A.F. and F.M. Klis, Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc, 2006. 1(5): p. 2253-6.
104. Heifetz, A., R.W. Keenan, and A.D. Elbein, Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase. Biochemistry, 1979. 18(11): p. 2186-92.
105. Roman, E., et al., The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans. PLoS One, 2015. 10(7): p. e0133476.
106. Droge, W., Free Radicals in the Physiological Control of Cell Function. Physiol Rev, 2002. 82: p. 47-95.
107. Helmerhorst, E.J., R.F. Troxler, and F.G. Oppenheim, The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U. S. A., 2001. 98(25): p. 14637–42.
108. Mello, E.O., et al., Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol, 2011. 62(4): p. 1209-17.
109. Wang, K., et al., Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochim Biophys Acta, 2015. 1848(10 Pt A): p. 2365-73.
110. Wang, Y., et al., Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med, 2006. 40(7): p. 1201-9.
111. Bilinski, T., et al., Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast. Biochem Biophys Acta, 1989. 1001: p. 102-6.
112. Babour, A., et al., A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell, 2010. 142(2): p. 256-69.
113. Levin, D.E., Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics, 2011. 189(4): p. 1145-75.
114. Hollien, J., Evolution of the unfolded protein response. Biochim Biophys Acta, 2013. 1833(11): p. 2458-63.
115. Gross, E., et al., Structure of Ero1p, Source of Disulfide Bonds for Oxidative Protein Folding in the Cell. Cell, 2004. 117: p. 601-10.
116. Kim, S., et al., Balanced Ero1 activation and inactivation establishes ER redox homeostasis. J Cell Biol, 2012. 196(6): p. 713-25.
117. Bonilla, M., K.K. Nastase, and K.W. Cunningham, Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J, 2002. 21(10): p. 2343–53.
118. Stefan, C.P. and K.W. Cunningham, Kch1 family proteins mediate essential responses to endoplasmic reticulum stresses in the yeasts Saccharomyces cerevisiae and Candida albicans. J Biol Chem, 2013. 288(48): p. 34861-70.
119. Chen, Y.-L., et al., On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Current Fungal Infection Reports, 2010. 4(4): p. 244-255.
120. Scorzoni, L., et al., Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol, 2017. 8: p. 36.
121. Perlin, D.S., Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci, 2015. 1354: p. 1-11.
122. Wheeler, R.T. and G.R. Fink, A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog, 2006. 2(4): p. e35.
123. Wiederhold, N.P., Paradoxical echinocandin activity: a limited in vitro phenomenon? Med Mycol, 2009. 47 Suppl 1: p. S369-75.
124. Ene, I.V., et al., Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol, 2012. 14(9): p. 1319-35.
125. Sanz, A.B., et al., The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel), 2017. 4(1).
126. Monge, R.A., et al., The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006. 152(Pt 4): p. 905-12.
127. Hua, X., et al., ROS-induced Oxidative Injury involved in Pathogenesis of Fungal Keratitis via p38 MAPK Activation. Sci Rep, 2017. 7(1): p. 10421.
128. Hotamisligil, G.S., Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell, 2010. 140(6): p. 900-17.
129. Yu, Q., et al., The P-type ATPase Spf1 is required for endoplasmic reticulum functions and cell wall integrity in Candida albicans. Int J Med Microbiol, 2013. 303(5): p. 257-66.
130. Perrone, G.G., S.X. Tan, and I.W. Dawes, Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta, 2008. 1783(7): p. 1354-68.
131. Lang, A., A.T. John Peter, and B. Kornmann, ER-mitochondria contact sites in yeast: beyond the myths of ERMES. Curr Opin Cell Biol, 2015. 35: p. 7-12.
132. Rowland, A.A. and G.K. Voeltz, Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol, 2012. 13(10): p. 607-25.
133. Steinbach, W.J., et al., Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol, 2007. 5(6): p. 418-30.
134. Gillum, A.M., E.Y.H. Tsay, and D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet, 1984. 198: p. 179-82.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *