帳號:guest(18.224.60.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高榮圻
作者(外文):Kao, Jung-Chi
論文名稱(中文):由c-Src調控的人類粒線體第一蛋白複合體NDUFS7磷酸化之研究及其對細胞內的分佈、SUMOylation修飾和不同壓力反應的關聯性
論文名稱(外文):c-Src-mediated phosphorylation of human mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 7 and its association with subcellular localization, SUMOylation and various cellular stresses
指導教授(中文):高茂傑
指導教授(外文):Kao, Mou-Chieh
口試委員(中文):林立元
張壯榮
口試委員(外文):Lin, Lih-Yuan
Chang, Chuang-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080505
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:粒線體氧化磷酸化系統粒線體蛋白NDUFS7粒線體引導序列細胞核座落訊號細胞核運出訊號磷酸化修飾
外文關鍵詞:MitochondriaOxidative phosphorylation systemNADH dehydrogenase (ubiquinone) Fe-S protein 7Mitochondrial targeting sequenceNuclear localization signalNuclear export signalPhosphorylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:188
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
有著“能量工廠”之稱的粒線體能為真核細胞運轉提供大部分的能源,而位在其內膜中的氧化磷酸化系統則由電子傳遞鏈和ATP合成裝置這兩部分所構成。Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7)為電子傳遞鏈第一蛋白質複合體中核心蛋白之一次單元,其具備了能與[4Fe-4S]鐵硫中心N2鍵結的保留序列,因此由細胞核基因所編碼的NDUFS7扮演著粒線體第一蛋白質複合體中電子傳遞最後接受者的重要角色。先前的研究顯示,NDUFS7的N端具有一段粒線體引導序列(MTS),其C端則分別具有細胞核座落訊號(NLS)和細胞核運出訊號(NES),且也出現粒線體、細胞質和細胞核等位置。NDUFS7的缺損已被發現與萊氏症候群(Leigh syndrome)及一些神經性疾病有所關聯。蛋白的分佈狀態與功能時常受到各種轉譯後修飾的調控,而其中又以磷酸化修飾在這一方面的涉及最為普遍。從我們之前的研究結果中可得知,主要位於細胞質中的c-Src酵素能對NDUFS7進行磷酸化修飾,故本研究首先驗證了無論在in vivo還是in vitro的實驗中NDUFS7皆能被c-Src磷酸化,接著藉由免疫沉澱的方式確認兩者可以互相結合,另外指出NDUFS7上的Tyr160位置為c-Src磷酸化修飾的重要位點且能對此蛋白的穩定性造成影響。在不影響NDUFS7於細胞核與細胞質中分佈的情況下,由c-Src所調控的NDUFS7磷酸化能增加該蛋白在粒線體中成熟型式的數量,意味著c-Src能促進NDUFS7進入粒線體中並轉化以成熟的形式存在。此外,NDUFS7的SUMOylation修飾會拮抗NDUFS7的磷酸化反應。根據測試在不同壓力反應的結果顯示,NDUFS7磷酸化的程度顯著受到由氯化鈷(CoCl2)所誘發的缺氧壓力及分別由過氧化氫(H2O2)和魚藤酮(Rotenone)所誘發的氧化壓力影響。另一方面,NDUFS7磷酸化程度反而在飢餓環境所產生的壓力下、粒線體膜電位受損及細胞凋亡的狀態中皆未受到顯著影響。之後我們的研究將著重於NDUFS7磷酸化修飾對粒線體功能的影響及其與其他修飾關聯性的細部探討。
Mitochondria, the powerhouse of cells, provide most of energy for cellular operation in eukaryotic cells. The oxidative phosphorylation (OXPHOS) system located on mitochondrial inner membrane consists of an electron transport chain and an ATP synthesis machinery. Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) is one of core subunits of mitochondrial complex I in the electron transport chain. NDUFS7 contains a conserved sequence for binding to the [4Fe-4S] cluster N2. This nuclear-encoded protein is involved in electron transport and plays a key role as “the last electron receptor” in mitochondrial complex I. Previously, we have demonstrated that NDUFS7 contains a mitochondrial targeting sequence (MTS) at the N-terminus, a nuclear localization signal (NLS) and a nuclear export signal (NES) at the C-terminus, and is present in mitochondria, the cytosol and the nucleus. Defects of NDUFS7 are found to be associated with Leigh syndrome and some neural diseases. The localization and function of a protein are frequently modulated by post-translational modifications and phoshphorylation is the most common modification involved in this aspect. We also found that NDUFS7 can be phosphorylated by c-Src, which is a kinase in the cytosol. In this study, phosphorylation of NDUFS7 by c-Src was verified in both in vivo and in vitro experiments. The physical interaction between NDUFS7 and c-Src was also confirmed by immunoprecipitation. In addition, Tyr160 of NDUFS7 was found as an important site for c-Src-mediated phosphorylation and could affect the stability of this protein. Furthermore, c-Src-mediated phosphorylation was found to increase the mature form of NDUFS7 in mitochondria without affecting the distribution of NDUFS7 in the nucleus and the cytosol. It implies that c-Src can promote the mitochondrial import of NDUFS7 and thus enhance its maturation. In addition, SUMOylation of NDUFS7 was antagonistic to NDUFS7 phosphorylation under the experimental setting used in this study. Based on the data for stress response analyses, the level of c-Src-mediated phosphorylation of NDUFS7 was significantly decreased in CoCl2-induced hypoxia, H2O2-induced and rotenone-induced oxidative stress. On the other hand, the level of c-Src-mediated phosphorylation of NDUFS7 was not significantly affected by serum-induced starvation, dissipation of mitochondrial membrane potential and induction of apoptosis. Further studies will focus on exploring the functional effects of NDUFS7 phosphorylation and the detailed mechanism of the crosstalk between phosphorylation and other modifications on NDUFS7.
摘要 I
Abstracts II
Abbreviations IV
Introduction 1
1. Mitochondria 1
1.1 Mitochondrial genome 2
1.2 Oxidative phosphorylation (OXPHOS) system 3
1.3 The crosstalk between mitochondria and nuclei 4
1.3.1 The function of NLS and NES 6
1.3.2 Mechanism of nucleo-cytoplasmic transport 7
1.3.3 The function of MTS 8
1.3.4 Mechanism of the cytosol-mitochondria transport 8
1.4 Mitochondrial complex I (NADH: ubiquinone oxidoreductase) 9
1.5 Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) 10
1.6 The localization of complex I NDUFS7 subunit 11
1.7 The association between NDUFS7 and diseases 11
2. Phosphorylation 14
2.1 Mechanism and function of phosphorylation 14
2.2 Phosphorylation sites 15
2.3 Protein phosphatases 16
2.4 Protein kinases 17
2.4.1 Src family tyrosine kinases 17
2.4.2 Structural domains of Src family kinases 18
2.4.3 Activation of Src family kinases 19
2.4.4 c-Src 20
2.4.5 Inhibitor of Src family kinases 21
2.5 Phosphorylation in mitochondria 21
2.5.1 Tyrosine phosphorylation and mitochondria 21
2.5.2 Src tyrosine kinases in mitochondria 22
2.6 The association between protein phosphorylation and stress responses 23
3. SUMOylation 23
3.1 SUMOylation in mitochondria 24
3.2 The crosstalk between SUMOylation and phosphorylation 25
Materials and methods 26
1. Cell culture 26
2. Antibodies and chemicals 26
3. Plasmids 27
4. Transient transfection 27
5. Preparation of whole cell extracts 28
6. Immunoprecipitation 29
7. Cell fractionation 29
8. Immunoblotting analysis 31
8.1 Immunoblotting steps for general studies (analyzed by antibodies related to phosphorylation) 31
8.2 Immunoblotting steps for sepcific studies (analyzed by antibodies related to phosphorylation) 32
9. The procedure for mild stripping of membrane for immunoblotting analysis 32
10. Hypoxia-induced assay 33
11. Oxidative stress-induced assay 33
12. Dissipation of mitochondrial membrane potential assay 34
13. Apoptosis-induced assay 34
14. Starvation-induced assay 35
15. Expression of recombinant NDUFS7-His 35
16. Purification of recombinant NDUFS7-His 36
17. Refolding of the purified recombinant NDUFS7-His 37
18. In vitro kinase assay 37
19. Phosphatase treatment 38
20. Statistical analysis 38
Results 39
1. Sequence analysis of NDUFS7 39
2. NDUFS7 is tyrosine-phosphorylated by c-Src in vivo 39
3. c-Src interacts directly with NDUFS7 in vivo 40
4. NDUFS7 is phoshorylated by c-Src in vitro 41
5. c-Src-mediated phosphorylation increases the mature form of NDUFS7 in mitochondria 42
6. Tyr160 of NDUFS7 is the major site for c-Src-mediated phosphorylation and affects protein stability of NDUFS7 43
7. SUMOylation of NDUFS7 has an antagonistic relationship to NDUFS7 phoshphorylation 43
8. The change of c-Src-mediated phosphorylation level of NDUFS7 in response to various stresses 44
Discussion 46
1. The relationship between the mechanism of mitochondrial import of NDUFS7 and c-Src-mediated phosphorylation 46
2. The relationship between phosphorylation and SUMOylation of NDUFS7 47
3. The mechanism of how c-Src transports into the mitochondria. 47
Tables 49
Figures 51
References 76
Appendixes 87

1. Henze, K. and W. Martin (2003). "Evolutionary biology: essence of mitochondria." Nature 426(6963): 127-128.
2. Bereiter, H. J. and M. Voth (1983). "Metabolic control of shape and structure of mitochondria in situ." Biol Cell 47: 309–322
3. Vanden Berghe, P., et al. (2004). "Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers." Am J Physiol Gastrointest Liver Physiol 286(4): G671-682.
4. Jensen, R. E. (2005). "Control of mitochondrial shape." Curr Opin Cell Biol 17(4): 384-388.
5. Itoh, K., et al. (2013). "Mitochondrial dynamics in neurodegeneration." Trends Cell Biol 23(2): 64-71.
6. Herrmann JM, Neupert W. (2000)."Protein transport into mitochondria." Curr Opin Microbiol 3(2): 210-214.
7. Alberts, B., et al. (2014) "Essential Cell Biology." Garland Pub.
8. Manganas, P., et al. (2017). "Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space." Cell Tissue Res 367(1): 43-57.
9. Pfanner, N. and M. Meijer (1997). "The Tom and Tim machine." Curr Biol 7(2): R100-103.
10. Wiedemann, N. and N. Pfanner (2017). "Mitochondrial Machineries for Protein Import and Assembly." Annu Rev Biochem 86: 685-714.
11. Sherratt, H. S. (1991). "Mitochondria: structure and function." Rev Neurol (Paris) 147(6-7): 417-430.
12. Scheffler, I. E. (2001). "Mitochondria make a come back" Adv Drug Deliv Rev 49: 3-26
13. Voet, D., et al. (2013) "Fundamentals of Biochemistry Life at the Molecular Level." New York City: John Wiley & Sons, Inc. pp. 582-584.
14. Soboll, S., et al. (1976). "Distribution of metabolites between mitochondria and cytosol of perfused liver." New York: Elsevier. pp. 29-40.
15. Mayr, J. A. (2015). "Lipid metabolism in mitochondrial membranes." J Inherit Metab Dis 38(1): 137-144.
16. Ademowo, O. S., et al. (2017). "Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?" Biogerontology 18(6): 859-879.
17. Thress, K., et al. (1999). "Mitochondria at the crossroad of apoptotic cell death." J Bioenerg Biomembr 31(4): 321-326.
18. McBride, H.M., et al. (2006). "Mitochondria: more than just a powerhouse." Curr Biol. 16(14): R551–R560.
19. Andersson, S. G., et al. (2003) "On the origin of mitochondria: a genomics perspective." Philos Trans R Soc Lond B Biol Sci. 358(1429): 165–179.
20. Thrash, J. C., et al. (2011). "Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade." Sci Rep 1: 13.
21. Smeitink, J., et al. (2001). "The genetics and pathology of oxidative phosphorylation." Nat Rev Genet 2(5): 342-352.
22. Taylor, R. W. and D. M. Turnbull (2005). "Mitochondrial DNA mutations in human disease." Nat Rev Genet 6(5): 389-402.
23. Stojanovski, D., et al. (2003). "Import of nuclear-encoded proteins into mitochondria." Exp Physiol 88(1): 57-64.
24. Smeitink, J., et al. (2001). "The genetics and pathology of oxidative phosphorylation." Nat Rev Genet 2(5): 342-352.
25. Sazanov, L. A. and P. Hinchliffe (2006). "Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus." Science 311(5766): 1430-1436.
26. Hirst, J. (2005). "Energy transduction by respiratory complex I--an evaluation of current knowledge." Biochem Soc Trans 33(Pt 3): 525-529.
27. Horsefield, R., et al. (2004). "Complex II from a structural perspective." Curr Protein Pept Sci 5(2): 107-118.
28. Cecchini, G. (2003). "Function and structure of complex II of the respiratory chain." Annu Rev Biochem 72: 77-109.
29. Calhoun, M. W., et al. (1994). "The cytochrome oxidase superfamily of redox-driven proton pumps." Trends Biochem Sci 19(8): 325-330.
30. Wikstrom, M. (1984). "Pumping of protons from the mitochondrial matrix by cytochrome oxidase." Nature 308(5959): 558-560.
31. Yoshikawa, S., et al. (2006). "Proton pumping mechanism of bovine heart cytochrome c oxidase." Biochim Biophys Acta 1757(9-10): 1110-1116.
32. Ogawa, S. and Lee, T. M. (1984) "The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis." J Biol Chem 259: 10004-10011.
33. Li, X., et al. (2013). "Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers." J Hematol Oncol 6(19): 19
34. Trewin, A. J., et al. (2019) "Mitochondrial ROS generated at the complex-II matrix or intermembrane space microdomain have distinct effects on redox signaling and stress sensitivity in C. elegans." Antioxid Redox Signal
35. Li, X., et al. (2016). "Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation." Arterioscler Thromb Vasc Biol 36(6): 1090-1100.
36. Finkel, T. (2012). "Signal transduction by mitochondrial oxidants." J Biol Chem 287(7): 4434-4440.
37. Monaghan, R. M., et al. (2015). "A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity." Nat Cell Biol 17(6): 782-792.
38. Nargund, A. M., et al. (2012). "Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation." Science 337(6094): 587-590.
39. Nargund, A. M., et al. (2015). "Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)." Mol Cell 58(1): 123-133.
40. Terry, L. J., et al. (2007). "Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport." Science 318(5855): 1412-1416.
41. Dingwall, C., et al. (1988). "The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen." J Cell Biol 107(3): 841-9.
42. la Cour, T., et al. (2004). "Analysis and prediction of leucine-rich nuclear export signals." Protein Eng Des Sel 17(6): 527-536.
43. Jans, D. A., et al. (2000). "Nuclear targeting signal recognition: a key control point in nuclear transport?" Bioessays 22(6): 532-544.
44. Stevens, K. E., et al. (2007). "A balance between two nuclear localization sequences and a nuclear export sequence governs extradenticle subcellular localization." Genetics 175(4): 1625-1636.
45. Nardozzi, J. D., et al. (2010). "Phosphorylation meets nuclear import: a review." Cell Commun Signal 8: 32.
46. Carrie, C. and I. Small (2013). "A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts." Biochim Biophys Acta 1833(2): 253-259.
47. Friedrich, T. and B. Bottcher (2004). "The gross structure of the respiratory complex I: a Lego System." Biochim Biophys Acta 1608(1): 1-9.
48. Vinothkumar, K. R., et al. (2014). "Architecture of mammalian respiratory complex I." Nature 515(7525): 80-84.
49. Hirst, J., et al. (2003). "The nuclear encoded subunits of complex I from bovine heart mitochondria." Biochim Biophys Acta 1604(3): 135-150.
50. Yagi, T., et al. (1998). "Procaryotic complex I (NDH-1), an overview." Biochim Biophys Acta 1364(2): 125-133.
51. Hirst, J. (2013). "Mitochondrial complex I." Annu Rev Biochem 82: 551-575.
52. Ohnishi, T. (1998). "Iron-sulfur clusters/semiquinones in complex I." Biochim Biophys Acta 1364(2): 186-206.
53. Hinchliffe, P. and L. A. Sazanov (2005). "Organization of iron-sulfur clusters in respiratory complex I." Science 309(5735): 771-774.
54. Murphy, M. P. (2009) "How mitochondria produce reactive oxygen species." Biochem J 417: 1-13.
55. Hyslop, S. J., et al. (1996). "Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13." Genomics 37(3): 375-380.
56. Ohnishi, T. (1998). "Iron-sulfur clusters/semiquinones in complex I." Biochim Biophys Acta 1364(2): 186-206.
57. Hirst, J. (2013)."Mitochondrial Complex I." Annual Review of Biochemistry Volume 82, pp. 551-575
58. Duarte, M., et al. (2002). "Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis." Biochem J 364(Pt 3): 833-839.
59. Chou, T. F. (2009) "Human mitochondrial complex I NDUFS7 subunit has a dual distribution both in mitochondria and nuclei" Master Thesis, National Tshing Hua University.
60. Yang, J. S. (2015) "Phosphorylation of Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) by c-Src" Master Thesis, National Tshing Hua University.
61. Noble, P. (2018) "Denis Archibald Leigh." Psychiatric Bulletin 22(10): 648-9.
62. Leigh, D. (1951). "Subacute necrotizing encephalomyelopathy in an infant." J Neurol Neurosurg Psychiatry 14(3): 216-221.
63. Dahl, H. H. (1998). "Getting to the nucleus of mitochondrial disorders: identification of respiratory chain-enzyme genes causing Leigh syndrome." Am J Hum Genet 63(6): 1594-1597.
64. Ahlers, P. M., et al. (2000). "Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY." Biochim Biophys Acta 1459(2-3): 258-265.
65. Jaokar, T. M., et al. (2013)."Structural Effects of Leigh Syndrome Mutations on the Function of Human Mitochondrial Complex-I Q module" Biochem Physiol S2
66. Lebon, S., et al. (2007). "A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome." Mol Genet Metab 92(1-2): 104-108.
67. Borch, J. M. (2010). "Which came first, the condition or the drug?" London Review of Books. 32(19): 31-33.
68. Anderson, I. M., et al. (2012). "Bipolar disorder." BMJ 345: e8508.
69. Sun, X., et al. (2006). "Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder." J Psychiatry Neurosci 31(3): 189-196.
70. Kato, T., et al. (1997). "Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder." Biol Psychiatry 42(10): 871-875.
71. Iwamoto, K., et al. (2005). "Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis." Hum Mol Genet 14(2): 241-253.
72. Andreazza, A. C., et al. (2013). "Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder." J Neurochem 127(4): 552-561.
73. Alzheimer, A. (1987). "About a peculiar disease of the cerebral cortex." Alzheimer Dis Assoc Disord 1(1): 3-8.
74. Burns, A. and S. Iliffe (2009). "Alzheimer's disease." BMJ 338: b158.
75. Knobloch, M. and I. M. Mansuy (2008). "Dendritic spine loss and synaptic alterations in Alzheimer's disease." Mol Neurobiol 37(1): 73-82.
76. Liang, W. S., et al. (2008). "Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons." Proc Natl Acad Sci U S A 105(11):4441-6.
77. Frykman, S., et al. (2012). "Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing." Neurochem Int 61(1): 108-118.
78. Duarte, M., et al. (2005). "Neurospora strains harboring mitochondrial disease-associated mutations in iron-sulfur subunits of complex I." Genetics 171(1): 91-99.
79. Copeland, J. M., et al. (2009). "Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain." Curr Biol 19(19): 1591-1598.
80. Oliveira, A. P. and U. Sauer (2012). "The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism." FEMS Yeast Res 12(2): 104-117.
81. Tripodi, F., et al. (2015). "Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control." Biochim Biophys Acta 1850(4): 620-627.
82. Cohen, P. (2002). "The origins of protein phosphorylation." Nat Cell Biol 4(5): E127-130.
83. Vlastaridis, P., et al. (2017). "Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes." Gigascience 6(2): 1-11.
84. Mao, C., et al. (1999). "X-Ray structure of glycerol kinase complexed with an ATP analog implies a novel mechanism for the ATP-dependent glycerol phosphorylation by glycerol kinase." Biochem Biophys Res Commun 259(3): 640-644.
85. Cole, P. A., et al. (2003). "Protein tyrosine kinases Src and Csk: a tail's tale." Curr Opin Chem Biol 7(5): 580-585.
86. Babior, B. M. (1999). "NADPH oxidase: an update." Blood 93(5): 1464-1476.
87. Ciesla, J., et al. (2011). "Phosphorylation of basic amino acid residues in proteins: important but easily missed." Acta Biochim Pol 58(2): 137-148.
88. Hunter, T. (1998). "The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease." Philos Trans R Soc Lond B Biol Sci 353(1368): 583-605.
89. Olsen, J. V., et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks." Cell 127(3): 635-648.
90. Zahedi, R. P., et al. (2008). "Phosphoproteome of resting human platelets." J Proteome Res 7(2): 526-534.
91. Pasantes-Morales, H. and R. Franco (2002). "Influence of protein tyrosine kinases on cell volume change-induced taurine release." Cerebellum 1(2): 103-109.
92. Di Stefano, P., et al. (2004). "P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading." Mol Biol Cell 15(2): 787-800.
93. Meijer, L., et al. (1991). "Cyclin B targets p34cdc2 for tyrosine phosphorylation." EMBO J 10(6): 1545-1554.
94. Lin, M., et al. (2006). "Ontogeny of tyrosine phosphorylation-signaling pathways during spermatogenesis and epididymal maturation in the mouse." Biol Reprod 75(4): 588-597.
95. Qing, K., et al. (1997). "Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression." Proc Natl Acad Sci U S A 94(20): 10879-10884.
96. Abel, B., et al. (2012). "N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells." FEBS Lett 586(19): 3317-3323.
97. Deutscher, J. and M. H. Saier, Jr. (2005). "Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established." J Mol Microbiol Biotechnol 9(3-4): 125-131.
98. Ciesla, J., et al. (2011). "Phosphorylation of basic amino acid residues in proteins: important but easily missed." Acta Biochim Pol 58(2): 137-148.
99. Li, X., et al. (2013). "Elucidating human phosphatase-substrate networks." Sci Signal 6(275): rs10.
100. Guan, K. L. and E. Butch (1995). "Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase." J Biol Chem 270(13): 7197-7203.
101. Mellgren, R. L., et al. (1977). "Dephosphorylation of phosphoproteins by Escherichia coli alkaline phosphatase." J Biol Chem 252(17): 6082-6089.
102. Seeburg, P. H., et al. (1977). "Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone." Nature 270(5637): 486-494.
103. Ullrich, A., et al. (1977). "Rat insulin genes: construction of plasmids containing the coding sequences." Science 196(4296): 1313-1319.
104. MacKintosh, C., et al. (1991). "Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase." Biochem J 273 ( Pt 3): 733-738.
105. Gatica, M., et al. (1993). "Effect of metal ions on the activity of casein kinase II from Xenopus laevis." FEBS Lett 315(2): 173-177.
106. Manning, G., et al. (2002). "The protein kinase complement of the human genome." Science 298(5600): 1912-1934.
107. Hunter, T. (1991). "Protein kinase classification." Methods Enzymol 200: 3-37.
108. Nishizuka, Y. (1984). "The role of protein kinase C in cell surface signal transduction and tumour promotion." Nature 308(5961): 693-698.
109. Schnaper, H. W. (1998). "Cell signal transduction through the mitogen-activated protein kinase pathway." Pediatr Nephrol 12(9): 790-795.
110. Obata, K., et al. (2004). "Activation of extracellular signal-regulated protein kinase in the dorsal root ganglion following inflammation near the nerve cell body." Neuroscience 126(4): 1011-1021.
111. Amanchy, R., et al. (2008). "Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays." J Proteome Res 7(9): 3900-3910.
112. Amanchy, R., et al. (2009). "Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling." Mol Oncol 3(5-6): 439-450.
113. Luo, W., et al. (2008). "Global impact of oncogenic Src on a phosphotyrosine proteome." J Proteome Res 7(8): 3447-3460.
114. Brown, M. T. and J. A. Cooper (1996). "Regulation, substrates and functions of src." Biochim Biophys Acta 1287(2-3): 121-149.
115. Gao, J., et al. (1997). "Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3." EMBO J 16(21): 6414-6425.
116. Cance, W. G., et al. (1994). "Rak, a novel nuclear tyrosine kinase expressed in epithelial cells." Cell Growth Differ 5(12): 1347-1355.
117. Zhang, S. and D. Yu (2012). "Targeting Src family kinases in anti-cancer therapies: turning promise into triumph." Trends Pharmacol Sci 33(3): 122-128.
118. Parsons, S. J. and J. T. Parsons (2004). "Src family kinases, key regulators of signal transduction." Oncogene 23(48): 7906-7909.
119. Moarefi, I., et al. (1997). "Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement." Nature 385(6617): 650-653.
120. Okada, M., et al. (1991). "CSK: a protein-tyrosine kinase involved in regulation of src family kinases." J Biol Chem 266(36): 24249-24252.
121. Cartwright, C. A., et al. (1987). "Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain." Cell 49(1): 83-91.
122. Reynolds, A. B., et al. (1987). "Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus." EMBO J 6(8): 2359-2364.
123. He, R. J., et al. (2014). "Protein tyrosine phosphatases as potential therapeutic targets." Acta Pharmacol Sin 35(10): 1227-1246.
124. Superti-Furga, G. and S. A. Courtneidge (1995). "Structure-function relationships in Src family and related protein tyrosine kinases." Bioessays 17(4): 321-330.
125. Reynolds, A. B., et al. (1989). "Stable association of activated pp60src with two tyrosine-phosphorylated cellular proteins." Mol Cell Biol 9(9): 3951-3958.
126. Lee, I., et al. (2005). "cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity." J Biol Chem 280(7): 6094-6100.
127. Ogura, M., et al. (2012). "Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components." Biochem J 447(2): 281-289.
128. Hanke, J. H., et al. (1996). "Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation." J Biol Chem 271(2): 695-701.
129. Chen, J. K., et al. (2000). "Overexpression of C-terminal Src kinase blocks 14, 15-epoxyeicosatrienoic acid-induced tyrosine phosphorylation and mitogenesis." J Biol Chem 275(18): 13789-13792.
130. Yoshizumi, M., et al. (2000). "Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species." J Biol Chem 275(16): 11706-11712.
131. Carlomagno, F., et al. (2003). "Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)." J Clin Endocrinol Metab 88(4): 1897-1902.
132. Brandvold, K. R., et al. (2012). "Development of a highly selective c-Src kinase inhibitor." ACS Chem Biol 7(8): 1393-1398.
133. Pagliarini, D. J. and J. E. Dixon (2006). "Mitochondrial modulation: reversible phosphorylation takes center stage?" Trends Biochem Sci 31(1): 26-34.
134. Lee, J., et al. (2007). "Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS." Mol Cell Proteomics 6(4): 669-676.
135. Reinders, J., et al. (2007). "Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase." Mol Cell Proteomics 6(11): 1896-1906.
136. Salvi, M., et al. (2005). "Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling." Free Radic Biol Med 38(10): 1267-1277.
137. Salvi, M., et al. (2002). "Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria." Biochim Biophys Acta 1589(2): 181-195.
138. Valente, E. M., et al. (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1." Science 304(5674): 1158-1160.
139. Miyazaki, T., et al. (2003). "Regulation of cytochrome c oxidase activity by c-Src in osteoclasts." J Cell Biol 160(5): 709-718.
140. Augereau, O., et al. (2005). "Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery." Cell Mol Life Sci 62(13): 1478-1488.
141. Livigni, A., et al. (2006). "Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism." Mol Biol Cell 17(1): 263-271.
142. Tibaldi, E., et al. (2008). "Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation." J Cell Biochem 104(3): 840-849.
143. Distler, A. M., et al. (2007). "Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry." Biochim Biophys Acta 1774(5): 628-636.
144. Rush, J., et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells." Nat Biotechnol 23(1): 94-101.
145. Lee, I., et al. (2006). "New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo." Biochemistry 45(30): 9121-9128.
146. Lewandrowski, U., et al. (2008). "Identification of new tyrosine phosphorylated proteins in rat brain mitochondria." FEBS Lett 582(7): 1104-1110.
147. Salvi, M., et al. (2007). "Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase." FEBS Lett 581(29): 5579-5585.
148. Feng, J., et al. (2010). "Tyrosine phosphorylation by Src within the cavity of the adenine nucleotide translocase 1 regulates ADP/ATP exchange in mitochondria." Am J Physiol Cell Physiol 298(3): C740-748.
149. Zhou, L., et al. (2017). "c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death." Cell Death Dis 8(10): e3117.
150. Jahani-Asl, A., et al. (2015). "CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death." Hum Mol Genet 24(16): 4573-4583.
151. Meluh, P. B. and D. Koshland (1995). "Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C." Mol Biol Cell 6(7): 793-807.
152. Okura, T., et al. (1996). "Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin." J Immunol 157(10): 4277-4281.
153. Shen, Z., et al. (1996). "UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins." Genomics 36(2): 271-279.
154. Boddy, M. N., et al. (1996). "PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia." Oncogene 13(5): 971-982.
155. Mahajan, R., et al. (1997). "A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2." Cell 88(1): 97-107.
156. Hay, R. T. (2005). "SUMO: a history of modification." Mol Cell 18(1): 1-12.
157. Chen, H. and D. C. Chan (2005). "Emerging functions of mammalian mitochondrial fusion and fission." Hum Mol Genet 14 Spec No. 2: R283-289.
158. Figueroa-Romero, C., et al. (2009). "SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle." FASEB J 23(11): 3917-3927.
159. Frank, S., et al. (2001). "The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis." Dev Cell 1(4): 515-525.
160. Wasiak, S., et al. (2007). "Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death." J Cell Biol 177(3): 439-450.
161. Harder, Z., et al. (2004). "Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission." Curr Biol 14(4): 340-345.
162. Chuang,M.F. (2016) "SUMO3 conjugation of human mitochondrial complex I subunit NDUFS7 is contributed to its subcellular localization and response to various cellular stresses." Master Thesis, National Tshing Hua University.
163. Tomanov, K., et al. (2018). "Sumoylation and phosphorylation: hidden and overt links." J Exp Bot 69(19): 4583-4590.
164. Chang, E., et al. (2011). "MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation." Blood 117(8): 2527-2537.
165. Yip, S. C., et al. (2012). "Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin." J Cell Sci 125(Pt 2): 310-316.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Study on allotopic expression of recoded human mitochondrial ND4L genes in mammalian cells
2. 探討人類粒線體第一蛋白質複合體ND3次單元之同素異位基因表現
3. 人類粒線體第一蛋白複合體NDUFS7的酪胺酸磷酸化修飾及其對此蛋白在細胞內分布的影響
4. 胃幽門螺旋桿菌26695菌株之D型阿拉伯糖-5-磷酸異構酶由HP1429基因所表現之特性研究
5. Studies on the import into mitochondria of the human ND4L subunit by reengineered nuclear genes
6. 人類粒線體第一蛋白質複合體中NDUFS7次單元擁有粒線體與細胞核兩種不同的分佈
7. 研究粒線體酵素複合體I中NDUFV2次單元的功能及其粒線體標的訊號
8. 胃幽門螺旋桿菌26695菌株之ADP-L-glycero-D-manno-heptose-6-epimerase由HP0859基因所表現之特性研究
9. Characterization and identification of Helicobacter pylori 26695 phosphopantetheine adenylyltransferase encoded by hp1475
10. 利用異位及異種表現的方式探討衣藻細胞核版粒線體呼吸鏈相關基因在人類細胞中之表現
11. 粒線體NDUFS8次單元功能分析及其粒線體標的訊號之研究
12. The functional study of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) subunit and its iron-sulfur cluster in human mitochondrial complex I under oxidative stress
13. 胃幽門螺旋桿菌26695菌株之phosphoheptose isomerase由 hp0857基因所表現之特性研究
14. 胃幽門桿菌HP0860基因缺失對脂多醣生合成的影響
15. 人類粒線體酵素複合體I的NDUFS8次單元蛋白質及其鐵硫中心之功能研究
 
* *