|
1. Libson, S. and M.J.I.r.o.p. Lippman, A review of clinical aspects of breast cancer. 2014. 26(1): p. 4-15. 2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. 2018. 68(1): p. 7-30. 3. TAIWAN, H.P.A.M.O.H.A.W., CANCER REGISTRY ANNUAL REPORT. 2016. 4. Sotiriou, C. and L.J.N.E.J.o.M. Pusztai, Gene-expression signatures in breast cancer. 2009. 360(8): p. 790-800. 5. Mauri, D., et al., Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. 2006. 98(18): p. 1285-1291. 6. André, F., et al., Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. 2014. 15(6): p. 580-591. 7. Wilcken, N. and R.J.E.J.o.C. Dear, Chemotherapy in metastatic breast cancer: a summary of all randomised trials reported 2000–2007. 2008. 44(15): p. 2218-2225. 8. Hartsell, W.F., et al., Randomized trial of short-versus long-course radiotherapy for palliation of painful bone metastases. 2005. 97(11): p. 798-804. 9. Harris, J.R., et al., Diseases of the Breast. 2012: Lippincott Williams & Wilkins. 10. Seyfried, T.N. and L.C.J.C.r.i.o. Huysentruyt, On the origin of cancer metastasis. 2013. 18(1-2): p. 43. 11. Handy, D.E., R. Castro, and J.J.C. Loscalzo, Epigenetic modifications: basic mechanisms and role in cardiovascular disease. 2011. 123(19): p. 2145-2156. 12. Moosavi, A. and A.M.J.I.b.j. Ardekani, Role of epigenetics in biology and human diseases. 2016. 20(5): p. 246. 13. Kleer, C.G., et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. 2003. 100(20): p. 11606-11611. 14. Weikert, S., et al., Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. 2005. 16(2): p. 349-353. 15. Varambally, S., et al., The polycomb group protein EZH2 is involved in progression of prostate cancer. 2002. 419(6907): p. 624. 16. Kim, Y.-I.J.T.J.o.n., Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. 2005. 135(11): p. 2703-2709. 17. Gharibiyan, A., et al., Serum/plasma DNA methylation pattern and early detection of breast cancer. 2015. 4(2): p. 120. 18. Yoo, K.H. and L.J.I.j.o.b.s. Hennighausen, EZH2 methyltransferase and H3K27 methylation in breast cancer. 2012. 8(1): p. 59. 19. Bartel, D.P. and C.-Z.J.N.r.g. Chen, Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. 2004. 5(5): p. 396. 20. Naeini, M.M. and A.M.J.A.j.o.m.b. Ardekani, Noncoding RNAs and cancer. 2009. 1(2): p. 55. 21. MacFarlane, L.-A. and P.J.C.g. R Murphy, MicroRNA: biogenesis, function and role in cancer. 2010. 11(7): p. 537-561. 22. Pratt, A.J. and I.J.J.J.o.B.C. MacRae, The RNA-induced silencing complex: a versatile gene-silencing machine. 2009. 284(27): p. 17897-17901. 23. Takahashi, R.-u., H. Miyazaki, and T.J.C. Ochiya, The roles of microRNAs in breast cancer. 2015. 7(2): p. 598-616. 24. Glover, A.B. and B.J.C.t.r. Leyland-Jones, Biochemistry of azacitidine: a review. 1987. 71(10): p. 959-964. 25. Berger, S.A., et al., Molecular genetic analysis of glucocorticoid and mineralocorticoid signaling in development and physiological processes. 1996. 61(4): p. 236-239. 26. Shiratsuchi, T., H. Ishibashi, and K.J.J.o.c.p. Shirasuna, Inhibition of epidermal growth factor‐induced invasion by dexamethasone and AP‐1 decoy in human squamous cell carcinoma cell lines. 2002. 193(3): p. 340-348. 27. Piette, C., et al., The dexamethasone-induced inhibition of proliferation, migration, and invasion in glioma cell lines is antagonized by macrophage migration inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors. 2009. 284(47): p. 32483-32492. 28. Zheng, Y., et al., Contrary regulation of bladder cancer cell proliferation and invasion by dexamethasone-mediated glucocorticoid receptor signals. 2012. 11(12): p. 2621-2632. 29. Lin, K.-T., et al., Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. 2015. 6: p. 5917. 30. Ryu, S., et al., Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. 2013. 23(1): p. 63-76. 31. Baer, C., et al., Epigenetic silencing of miR‐708 enhances NF‐κB signaling in chronic lymphocytic leukemia. 2015. 137(6): p. 1352-1361. 32. Ramchandani, D., et al., Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. 2019. 18(3): p. 579-591.
|