帳號:guest(18.189.182.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李金燁
作者(外文):Li, Jin-Ye
論文名稱(中文):趨化素CCL5保留性序列FAY對結構的重要性
論文名稱(外文):Structural significance of CCL5 conserved FAY sequence
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):徐駿森
蕭傳鐙
口試委員(外文):Hsu, Chun-Hua
Hsiao, Chwan-Deng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:106080467
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:76
中文關鍵詞:趨化素聚集機制
外文關鍵詞:CCL5FAY sequenceoligomerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
CCL5 (又稱RANTES, Regulated upon Activation expressed by Normal T cells and presumably Secreted)是一種化學趨化素,能調節活化和驅使白血球到達發炎位置引起免疫反應。CCL5受到生理環境和結合目標物影響,以不同聚集形態執行生理功能。單體CCL5能結合接受體活化細胞內訊息傳遞路徑,而CCL5多聚體能結合細胞表面多糖類 (glycosaminoglycan)引起細胞遷移。之前研究解析了CCL5三聚體結構,由兩個突變蛋白質CCL5 E66S和一個野生型CCL5構成。在此結構中,12FAY14區域參與構成交互界面 (interface)。通過序列比對發現, 12FAY14在多種哺乳類動物CCL5家族中具有高度一致性,我們推測這個保留性區域參與CCL5聚集過程。在本研究中,結合核磁共振實驗,我們發現F12和Y14影響CCL5雙聚體的穩定性,Y14還參與了CCL5沉澱,尤其突變蛋白質CCL5-12AAA14能在溶液中穩定維持低聚集形態。我們用結晶學方式解析了CCL5-12AAA14的雙聚體結構,CCL5-12AAA14和野生型CCL5雙聚體相比在N端的交互界面發生骨架位移。我們亦用核磁共振實驗證實了在溶液中這一新雙聚體的存在,確定了F12和Y14影響和改變CCL5的結構特性。我們利用T1, T2, NOE實驗探討CCL5-12AAA14在溶液中的動力學特性,發現其在溶液中同時存在單體和雙聚體,且以雙聚體為主。對CCL5聚集機制的研究將幫助我們了解其結構和生理功能之間的關係,對於研發類似物作為拮抗劑有進一步的幫助。
CCL5 is known to regulate immune responses by mediating the activation and chemotaxis of leukocytes. In order to perform variable functions, CCL5 forms different oligomers depending on environment and binding target. Monomeric CCL5 possesses the ability to activate intracellular signaling upon binding G protein-coupled receptor, while oligomeric CCL5 is capable to trigger protein tyrosine kinase pathway and cause cell migration through cell surface glycosaminoglycans. We determined a CCL5 trimer structure that one additional CCL5 is asymmetrically in complex with CCL5 CC-type dimer. The structure revealed that 12FAY14 sequence was responsible for conjugating the CCL5 dimer. We noticed that the 12FAY14 sequence is conserved in mammalian CCL5s and might be involved in CCL5 oligomerization. By NMR analysis, both residues Phe 12 and Tyr 14 were found to affect the stability of CCL5 dimer whereas Tyr 14 particularly participate in the CCL5 precipitation. The CCL5-12AAA14 variant with double mutations of F12A and Y14A showed a highly impaired oligomerization property. Different NMR methods including 15N T1, T2, and NOE measurements were used to characterize the oligomeric status of CCL5-12AAA14 in solution. The structure of CCL5-12AAA14 was determined by X-ray crystallography and confirmed by NMR. We conclude that CCL5-12AAA14 is deficient in forming oligomer and the major formations in solution are monomer and dimer. Thus, the 12FAY14 sequence in CCL5 not only involves in the oligomerization but also modulates the monomer-dimer equilibrium. The study provides a new insight to understand CCL5 oligomerization and concept for designing CCL5 analog to regulate CCR5 function.
Abstract
Figure Content iii
Table Content vi
Chapter 1 Introduction 1
1.1 Chemokine and its biological function 1
1.2 The interaction of chemokine and receptor 2
1.3 The interaction of CCL5 and glycosaminoglycan (GAG) 3
1.4 The structure of CCL5 and its oligomerization properties 5
1.5 Aim of this study 7
Chapter 2 Materials and Methods 9
2.1 Cloning and mutagenesis 9
2.2 Protein expression and purification 9
2.3 The turbidity assay 10
2.4 Size exclusion chromatography 10
2.5 Crystallization and diffraction data collection 11
2.6 NMR HSQC spectroscopy 12
2.7 NMR relaxation experiments 12
2.8 NMR backbone assignment 12
Chapter 3 Results 14
3.1 Wild-type CCL5 pH-dependent aggregation 14
3.2 The oligomerization and aggregation properties of CCL5 variants 15
3.3 The tertiary fold of CCL5-12AAA14 is sensitive to temperature and salt 17
3.4 Crystal structure of CCL5-12AAA14 17
3.5 CCL5-12AAA14 backbone assignment 19
3.6 The interaction between CCL5-12AAA14 and sulfate ion 22
3.7 Relaxation data analysis 23
3.8 Oligomeric state identification of CCL5 variants 25
Chapter 4 Discussion 26
4.1 Mutant CCL5-12AAA14 26
4.2 Respective roles of F12 and Y14 in CCL5 26
4.3 The FAY sequence in chemokines 28
4.4 The interaction of sulfate ion and CCL5-12AAA14 29
Reference 72

1. Raman, D., T. Sobolik-Delmaire, and A. Richmond, Chemokines in health and disease. Exp Cell Res, 2011. 317(5): p. 575-89.
2. Stone, M.J., et al., Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci, 2017. 18(2).
3. Proudfoot Amanda, J.Z., Bonvin Pauline, Handel Tracy, Glycosaminoglycan interactions with chemokines add complexity to a complex system Pharmaceuticals, 2017. 10(3): p. 1424-8247.
4. T J Schall, J.J., B J Dyer, J Jorgensen, C Clayberger, M M Davis and A M Krensky, A human T cell-specific molecule is a member of a new gene family. J Immunology, 1988. 141(3): p. 1018-1025.
5. Albert Zlotnik, O.Y., Chemokines: A new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121-127.
6. KB Bacon, B.P., P Gardner, TJ Schall, Activation of dual T cell signaling pathways by the chemokine RANTES. Science, 1995. 269(5231): p. 1727-1730.
7. Elias J. Fernandez, E.L., Structure, function, and inhibition of chemokines. Annual Review of Pharmacology and Toxicology, 2002. 42: p. 469-499.
8. Ghalib Alkhatib, C.C., Christopher C. Broder, Yu Feng, Paul E. Kennedy, CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996. 272(5270): p. 1955-1958.
9. Deepika R. Pakianathan, E.G.K., Dean R. Arti, Nicholas J. Skelton, Caroline A. He ́bert, Distinct but overlapping epitopes for the interaction of a CC-Chemokine with CCR1, CCR3, and CCR5 Biochemistry, 1997. 36(32): p. 9642-9648.
10. Jill Wilken, D.H., Darren A Thomp son, Paul N Barlow, Helen McSpaaron, et al, Total chemical synthesis and high-resolution crystal structure of the potent anti-HIV protein AOP-RANTES. Chemistry & Biology, 1999. 6(1): p. 43-51.
11. Sabbe, R., et al., Donor- and ligand-dependent differences in C-C chemokine receptor 5 reexpression. J Virol, 2001. 75(2): p. 661-71.
12. Hongjun Jin, I.K., Pingwei Li, Patricia J. LiWang, Structural and functional studies of the potent anti-HIV chemokine variant P2-RANTES. Proteins, 2010. 78(2): p. 295-308.
13. Wiktor, M., O. Hartley, and S. Grzesiek, Characterization of structure, dynamics, and detergent interactions of the anti-HIV chemokine variant 5P12-RANTES. Biophys J, 2013. 105(11): p. 2586-97.
14. Justin P Ludeman, M.J.S., The structural role of receptor tyrosine sulfation in chemokine recognition. British Journal of Pharmacology, 2014. 171(5): p. 1167-1179.
15. Seibert, C., et al., Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11031-6.
16. Bannert, N., et al., Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. The Journal of Experimental Medicine, 2001. 194(11): p. 1661-1674.
17. Gaertner, H., et al., Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci U S A, 2008. 105(46): p. 17706-11.
18. John S. Burg, J.R.I., A. J. Venkatakrishnan, Kevin M. Jude, Abhiram Dukkipati, et al., Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science, 2015. 347(6226): p. 1113-1117.
19. Ling Qin, I.K., Lauren G. Holden, Chong Wang, Yi Zheng, et al., Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 2015. 347(6226): p. 1117-1122.
20. Zheng, Y., et al., Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity, 2017. 46(6): p. 1005-1017 e5.
21. Meital Abayev, J.o.P.G.L.M.R., Gautam Srivastava, Boris Arshava, Łukasz Jaremko, Mariusz Jaremko, Fred Naider, Michael Levitt, Jacob Anglister, The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS, 2018. 285(111): p. 1988-2003.
22. Deshauer, C., et al., Interactions of the chemokine CCL5/RANTES with medium-sized chondroitin sulfate ligands. Structure, 2015. 23(6): p. 1066-77.
23. Gabriele S. V. Kuschert, F.C., Christine A. Power, Amanda E. I. Proudfoot, Rod E. Hubbard et al, Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry, 1999. 38(39): p. 12959-2968.
24. Victor Appay, A.B., Scott Cribbes, Eliot Randle, Lloyd G. Czaplewski, Aggregation of RANTES is responsible for its inflammatory properties. J Biol Chem, 1999. 274(39): p. 27505-27512.
25. Proudfoot, A.E., et al., The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem, 2001. 276(14): p. 10620-6.
26. Baltus, T., Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood, 2003. 102(6): p. 1985-1988.
27. Shaw, J.P., et al., The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. Structure, 2004. 12(11): p. 2081-93.
28. Lloyd G. Czaplewski, J.M., C. Jeremy Craven, Lee D. Higgins, Victor Appay, Anthony Brown, Tim Dudgeon, Lesley A. Howard, Tim Meyers, Jo Owen, Shilpa R. Palan et.al, Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1α, MIP-1β, and RANTES. Biological Chemistry, 1999. 274(23): p. 16077-16084.
29. Mizumoto, S., D. Fongmoon, and K. Sugahara, Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines. Glycoconj J, 2013. 30(6): p. 619-32.
30. Wenguang G. Liang, C.G.T., Teng-Yi Huang, Medel Manuel L. Zulueta, Shiladitya Banerjee, Aaron R. Dinner, Shang-Cheng Hung, Wei-Jen Tang, Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci, 2016. 113(18): p. 5000-5005.
31. Nicholas J. Skelton, F.A., John Ogez, Thomas J. Schall1, Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry, 1995. 34(16): p. 5329–5342.
32. Murooka, T.T., et al., CCL5-CCR5-mediated apoptosis in T Cells: Requirement for glycosaminoglycan binding and CCL5 aggregation. Journal of Biological Chemistry, 2006. 281(35): p. 25184-25194.
33. Chun-wa Chung, R.M.C., Amanda E. I. Proudfoot, Timothy N. C. Wells, The three-dimensional solution structure of RANTES. Biochemistry, 1995. 34(29): p. 9307–9314.
34. Wang, X., et al., Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure, 2011. 19(8): p. 1138-48.
35. Yi-Chen Chen, K.-M.L., Raz Zarivach, Yuh-Ju Sun, Shih-Che Sue, Human CCL5 trimer: expression, purification and initial crystallographic studies. Acta Cryst, 2018. 74(2): p. 82-85.
36. Jennifer S. Laurence, C.B., John W. Burgner, Marc Parmentier, Patricia J. LiWang, CC chemokine MIP-1β can function as a monomer and depends on Phe13 for receptor binding. Biochemistry, 2000. 39(12): p. 3401-3409.
37. Laboratory, S.D., The CCP4 suite: programs for protein crystallography. Acta Cryst, 1994. 50: p. 760-763.
38. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 2004. 60(12): p. 2126-2132.
39. Frank Delaglio, S.G., Geerten W. Vuister, Guang Zhu, John Pfeifer, Ad Bax, NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 1995. 6(3): p. 277-293.
40. Lee, W., M. Tonelli, and J.L. Markley, NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics, 2015. 31(8): p. 1325-1327.
41. Roman A. Laskowski, J.A.C.R., Malcolm W. MacArthur, Robert Kaptein and Janet M. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 1996. 8(4): p. 477-486.
42. Krissinel, E., Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res, 2015. 43(W1): p. 314-9.
43. Shen, Y., et al., TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR, 2009. 44(4): p. 213-223.
44. Chen, Y.-C., Structural study of CCL5 and its oligomerization mechanism. 2018(https://hdl.handle.net/11296/nc3fq4): p. Doctoral thesis, Institute of bioinformatics and structural biology, National Tsing Hua University.
45. Katherine Y. Blain, W.K., Qinghai Zhao, David La Fleur, Chethana Naik, Tae-Wook Chun, Tatiana Tsareva, Palanisamy Kanakaraj, Michael W. Laird, Rutul Shah, Lisa George, Indra Sanyal, Paul A. Moore, Borries Demeler, Senyon Choe, Structural and functional characterization of CC chemokine CCL14. Biochemistry, 2007. 46(35): p. 10008-10015.
46. Ren, M., et al., Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J, 2010. 29(23): p. 3952-66.
47. Jiqing Ye, K.L.M., Michael R. Mayer, Martin J. Stone, NMR solution structure and backbone dynamics of the CC chemokine Eotaxin-3. Biochemistry, 2001. 40(26): p. 7820-7831.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *