|
1. Raman, D., T. Sobolik-Delmaire, and A. Richmond, Chemokines in health and disease. Exp Cell Res, 2011. 317(5): p. 575-89. 2. Stone, M.J., et al., Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci, 2017. 18(2). 3. Proudfoot Amanda, J.Z., Bonvin Pauline, Handel Tracy, Glycosaminoglycan interactions with chemokines add complexity to a complex system Pharmaceuticals, 2017. 10(3): p. 1424-8247. 4. T J Schall, J.J., B J Dyer, J Jorgensen, C Clayberger, M M Davis and A M Krensky, A human T cell-specific molecule is a member of a new gene family. J Immunology, 1988. 141(3): p. 1018-1025. 5. Albert Zlotnik, O.Y., Chemokines: A new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121-127. 6. KB Bacon, B.P., P Gardner, TJ Schall, Activation of dual T cell signaling pathways by the chemokine RANTES. Science, 1995. 269(5231): p. 1727-1730. 7. Elias J. Fernandez, E.L., Structure, function, and inhibition of chemokines. Annual Review of Pharmacology and Toxicology, 2002. 42: p. 469-499. 8. Ghalib Alkhatib, C.C., Christopher C. Broder, Yu Feng, Paul E. Kennedy, CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996. 272(5270): p. 1955-1958. 9. Deepika R. Pakianathan, E.G.K., Dean R. Arti, Nicholas J. Skelton, Caroline A. He ́bert, Distinct but overlapping epitopes for the interaction of a CC-Chemokine with CCR1, CCR3, and CCR5 Biochemistry, 1997. 36(32): p. 9642-9648. 10. Jill Wilken, D.H., Darren A Thomp son, Paul N Barlow, Helen McSpaaron, et al, Total chemical synthesis and high-resolution crystal structure of the potent anti-HIV protein AOP-RANTES. Chemistry & Biology, 1999. 6(1): p. 43-51. 11. Sabbe, R., et al., Donor- and ligand-dependent differences in C-C chemokine receptor 5 reexpression. J Virol, 2001. 75(2): p. 661-71. 12. Hongjun Jin, I.K., Pingwei Li, Patricia J. LiWang, Structural and functional studies of the potent anti-HIV chemokine variant P2-RANTES. Proteins, 2010. 78(2): p. 295-308. 13. Wiktor, M., O. Hartley, and S. Grzesiek, Characterization of structure, dynamics, and detergent interactions of the anti-HIV chemokine variant 5P12-RANTES. Biophys J, 2013. 105(11): p. 2586-97. 14. Justin P Ludeman, M.J.S., The structural role of receptor tyrosine sulfation in chemokine recognition. British Journal of Pharmacology, 2014. 171(5): p. 1167-1179. 15. Seibert, C., et al., Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11031-6. 16. Bannert, N., et al., Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. The Journal of Experimental Medicine, 2001. 194(11): p. 1661-1674. 17. Gaertner, H., et al., Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci U S A, 2008. 105(46): p. 17706-11. 18. John S. Burg, J.R.I., A. J. Venkatakrishnan, Kevin M. Jude, Abhiram Dukkipati, et al., Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science, 2015. 347(6226): p. 1113-1117. 19. Ling Qin, I.K., Lauren G. Holden, Chong Wang, Yi Zheng, et al., Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 2015. 347(6226): p. 1117-1122. 20. Zheng, Y., et al., Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity, 2017. 46(6): p. 1005-1017 e5. 21. Meital Abayev, J.o.P.G.L.M.R., Gautam Srivastava, Boris Arshava, Łukasz Jaremko, Mariusz Jaremko, Fred Naider, Michael Levitt, Jacob Anglister, The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS, 2018. 285(111): p. 1988-2003. 22. Deshauer, C., et al., Interactions of the chemokine CCL5/RANTES with medium-sized chondroitin sulfate ligands. Structure, 2015. 23(6): p. 1066-77. 23. Gabriele S. V. Kuschert, F.C., Christine A. Power, Amanda E. I. Proudfoot, Rod E. Hubbard et al, Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry, 1999. 38(39): p. 12959-2968. 24. Victor Appay, A.B., Scott Cribbes, Eliot Randle, Lloyd G. Czaplewski, Aggregation of RANTES is responsible for its inflammatory properties. J Biol Chem, 1999. 274(39): p. 27505-27512. 25. Proudfoot, A.E., et al., The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem, 2001. 276(14): p. 10620-6. 26. Baltus, T., Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood, 2003. 102(6): p. 1985-1988. 27. Shaw, J.P., et al., The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. Structure, 2004. 12(11): p. 2081-93. 28. Lloyd G. Czaplewski, J.M., C. Jeremy Craven, Lee D. Higgins, Victor Appay, Anthony Brown, Tim Dudgeon, Lesley A. Howard, Tim Meyers, Jo Owen, Shilpa R. Palan et.al, Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1α, MIP-1β, and RANTES. Biological Chemistry, 1999. 274(23): p. 16077-16084. 29. Mizumoto, S., D. Fongmoon, and K. Sugahara, Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines. Glycoconj J, 2013. 30(6): p. 619-32. 30. Wenguang G. Liang, C.G.T., Teng-Yi Huang, Medel Manuel L. Zulueta, Shiladitya Banerjee, Aaron R. Dinner, Shang-Cheng Hung, Wei-Jen Tang, Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci, 2016. 113(18): p. 5000-5005. 31. Nicholas J. Skelton, F.A., John Ogez, Thomas J. Schall1, Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry, 1995. 34(16): p. 5329–5342. 32. Murooka, T.T., et al., CCL5-CCR5-mediated apoptosis in T Cells: Requirement for glycosaminoglycan binding and CCL5 aggregation. Journal of Biological Chemistry, 2006. 281(35): p. 25184-25194. 33. Chun-wa Chung, R.M.C., Amanda E. I. Proudfoot, Timothy N. C. Wells, The three-dimensional solution structure of RANTES. Biochemistry, 1995. 34(29): p. 9307–9314. 34. Wang, X., et al., Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure, 2011. 19(8): p. 1138-48. 35. Yi-Chen Chen, K.-M.L., Raz Zarivach, Yuh-Ju Sun, Shih-Che Sue, Human CCL5 trimer: expression, purification and initial crystallographic studies. Acta Cryst, 2018. 74(2): p. 82-85. 36. Jennifer S. Laurence, C.B., John W. Burgner, Marc Parmentier, Patricia J. LiWang, CC chemokine MIP-1β can function as a monomer and depends on Phe13 for receptor binding. Biochemistry, 2000. 39(12): p. 3401-3409. 37. Laboratory, S.D., The CCP4 suite: programs for protein crystallography. Acta Cryst, 1994. 50: p. 760-763. 38. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 2004. 60(12): p. 2126-2132. 39. Frank Delaglio, S.G., Geerten W. Vuister, Guang Zhu, John Pfeifer, Ad Bax, NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 1995. 6(3): p. 277-293. 40. Lee, W., M. Tonelli, and J.L. Markley, NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics, 2015. 31(8): p. 1325-1327. 41. Roman A. Laskowski, J.A.C.R., Malcolm W. MacArthur, Robert Kaptein and Janet M. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 1996. 8(4): p. 477-486. 42. Krissinel, E., Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res, 2015. 43(W1): p. 314-9. 43. Shen, Y., et al., TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR, 2009. 44(4): p. 213-223. 44. Chen, Y.-C., Structural study of CCL5 and its oligomerization mechanism. 2018(https://hdl.handle.net/11296/nc3fq4): p. Doctoral thesis, Institute of bioinformatics and structural biology, National Tsing Hua University. 45. Katherine Y. Blain, W.K., Qinghai Zhao, David La Fleur, Chethana Naik, Tae-Wook Chun, Tatiana Tsareva, Palanisamy Kanakaraj, Michael W. Laird, Rutul Shah, Lisa George, Indra Sanyal, Paul A. Moore, Borries Demeler, Senyon Choe, Structural and functional characterization of CC chemokine CCL14. Biochemistry, 2007. 46(35): p. 10008-10015. 46. Ren, M., et al., Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J, 2010. 29(23): p. 3952-66. 47. Jiqing Ye, K.L.M., Michael R. Mayer, Martin J. Stone, NMR solution structure and backbone dynamics of the CC chemokine Eotaxin-3. Biochemistry, 2001. 40(26): p. 7820-7831.
|