帳號:guest(18.119.113.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馮家成
作者(外文):Fung, Ka-Shing
論文名稱(中文):皮質神經元再生過程中WNT3A上游增強子核糖核酸表達的分析
論文名稱(外文):Analysis of WNT3A upstream enhancer RNA expression during regeneration of cortical neurons
指導教授(中文):陳令儀
指導教授(外文):Chen, Lin-Yi
口試委員(中文):高茂傑
張壯榮
口試委員(外文):Kao, Mou-Chieh
Chang, Chuang-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:106080401
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:55
中文關鍵詞:皮質神經元再生增強子核糖核酸
外文關鍵詞:WNT3Aenhancerneuron
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
神經系統對動物至關重要,透過將信號傳遞到身體各個部位來調節不同的行為。大腦一旦受到傷害,會導致記憶力減退、運動平衡、認知功能障礙等等。與周邊神經系統不同,中樞神經系統表現出較差的再生能力。由於受影響神經元的內在再生潛力降低、髓鞘相關抑制分子增加和CNS損傷後觀察到的神經膠質瘢痕等等,以上都是導致中樞神經系統再生能力較差的原因。先前的研究指出,去除外在抑制分子不足以有效改善軸突再生。因此,我們把注意力放在可能會促進受損腦神經元再生的分子機制上。我們實驗室在先前的實驗已將WNT3A基因鑑定為有潛力神經再生相關基因。此外還預測了負責增加WNT3A表達的新穎增強子區域。鑑於高水平的增強子RNA(eRNA)傾向於從活性增強子轉錄,我們觀察了新穎增強子區域eRNA的表達。結果顯示在神經再生期間,來自新增強子區域(e7)的eRNA表現率增加。為了進一步研究調節WNT3A表達的機制,利用染色質免疫沉澱測定法(ChIP assay)分析受損皮質神經元在再生期間WNT3A增強子E7區域的組蛋白修飾(H3K4me1和H3K27ac)。eRNA已被證明是透過募集RNA聚合酶II和轉錄激活因子(例如p300)來驅動增強子 - 啟動子環化結構。因此,eRNA驅動的DNA環化通過組蛋白修飾而增強基因啟動子的活化並進一步增加基因表達。為此,我們計劃進行Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)實驗,以刪除目標增強子,看它是否影響WNT3A的表達。之後使用PC12細胞確認CRISPR的效率,並在皮層神經元中進行此實驗。
The nervous system coordinates animal behavior through transmitting signals to various part of the body. Injury of the brain causes memory loss, motor balance, and cognitive dysfunction. Unlike the peripheral nervous system, the central nervous system exhibits poor regeneration capacity due to decreased intrinsic regeneration potential of affected neurons, increased myelin-associated inhibitors and glial scar observed after CNS injury. Previous studies reveal that, removing the extrinsic inhibitory molecules is not enough for regeneration of long-distance axon. Thus, we focus on the intrinsic molecular mechanisms that may promote regeneration of injured brain neurons. Based on the preliminary results, our laboratory identified WNT3A gene as a promising regeneration associated gene. A novel enhancer region responsible for the increased expression of WNT3A was also predicted. Given that high level of enhancer RNAs (eRNAs) tend to be transcribed from active enhancers, we examined the expression of eRNAs transcribed from predicted novel enhancer region. Our results showed increased eRNAs from a sub-region (e7) of the novel enhancer during regeneration. To further study the mechanism that regulates the expression of WNT3A, histone modifications (H3K4me1 and H3K27ac) of the e7 region of WNT3A enhancer during regeneration of injured cortical neuron were analyzed using chromatin immunoprecipitation assays. eRNA is known to drive enhancer–promoter looping architecture through recruitment of RNA polymerase II and transcriptional activators (e.g. p300). eRNA-driven DNA looping would thus enhance the activation of gene promoters via histone modification and further increase gene expression. To this end, we plan to perform clustered regularly interspaced short palindromic repeats (CRISPR) assays to delete the target enhancer and see if it affects the expression of WNT3A. The deletion efficiency was confirmed using PC12 cells and will be confirmed in the primary cortical neurons.
目錄
摘要 2
Abstract 3
致謝 4
目錄 6
Introduction 8
Traumatic brain injury (TBI) 8
Regeneration of damaged Central nervous system (CNS) 9
WNT signaling pathway and WNT3A gene 10
Epigenetic regulation via DNA methylation and histone modification 12
Mechanism of enhancer regulation 15
Role of enhancer RNA (eRNA) in transcription 16
Materials and Methods 18
Reagents and antibodies 18
Experimental animals and primary cortical neurons culture 19
Cell culture 19
CRISPR/Cas9 constructs 20
Experimental injury assay 20
Total RNA extraction, reverse transcription polymerase chain reaction (RT-PCR), Polymerase chain reaction (PCR) and real-time polymerase chain reaction(qPCR) 20
DNA Agarose Gel Electrophoresis and eRNA expression quantification 21
Chromatin immunoprecipitation (ChIP) assays 21
CRISPR/Cas editing 22
Statistical analysis 23
Results 24
Expression of eRNAs transcribed from the predicted enhancer for WNT3A gene 24
Histone modifications at e7 region during neuronal regeneration 25
Gene editing at the e7 enhancer region 26
Conclusion 27
Discussion 28
附圖 32
Table 1. List of primers sequences for PCR and qPCR 32
Table 2. List of primers sequences for ChIP assay qPCR 33
Table 3. List of sgRNAs sequences for CRISPR/Cas9 assay 34
Figure 1. Investigation of the expression of eRNAs that are derived from predicted enhancer for WNT3A gene 35
Figure 2. Histone modifications at e7 region during neuronal regeneration 38
Figure 3. Gene editing of the e7 enhancer region 41
Figure 4. Proposed enhancer regulation for WNT3A gene expression 44
Figure 5. Investigation of the expression of new e7 eRNAs that are derived from predicted enhancer for WNT3A gene 45
References 47

1. Utomo, W.K., et al., Predictors of in-hospital mortality and 6-month functional outcomes in older adults after moderate to severe traumatic brain injury. Injury, 2009. 40(9): p. 973-7.
2. Maas, A.I., N. Stocchetti, and R. Bullock, Moderate and severe traumatic brain injury in adults. Lancet Neurol, 2008. 7(8): p. 728-41.
3. Wang, Z.F., et al., Salubrinal Offers Neuroprotection through Suppressing Endoplasmic Reticulum Stress, Autophagy and Apoptosis in a Mouse Traumatic Brain Injury Model. Neurobiol Learn Mem, 2019.
4. Killen, M.J., et al., Metabolism and inflammation: implications for traumatic brain injury therapeutics. Expert Rev Neurother, 2019: p. 1-16.
5. Zhang, J.Y., et al., Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma, 2018. 35(5): p. 802-813.
6. Rehman, T., et al., Rapid progression of traumatic bifrontal contusions to transtentorial herniation: A case report. Cases J, 2008. 1(1): p. 203.
7. Xiong, Y., A. Mahmood, and M. Chopp, Animal models of traumatic brain injury. Nat Rev Neurosci, 2013. 14(2): p. 128-42.
8. Hall, E.D., R.A. Vaishnav, and A.G. Mustafa, Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 2010. 7(1): p. 51-61.
9. Marmarou, A., et al., Traumatic brain tissue acidosis: experimental and clinical studies. Acta Neurochir Suppl (Wien), 1993. 57: p. 160-4.
10. Mustafa AG, A.-S.O., The role of free radicals and reactive species following traumatic brain injury. OA Biotechnology, 2013. 2(3): p. 23.
11. Shi, K., et al., Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol, 2019.
12. Silver, J. and J.H. Miller, Regeneration beyond the glial scar. Nat Rev Neurosci, 2004. 5(2): p. 146-56.
13. Brittis, P.A., D.R. Canning, and J. Silver, Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science, 1992. 255(5045): p. 733-6.
14. Silver, J., M.E. Schwab, and P.G. Popovich, Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol, 2014. 7(3): p. a020602.
15. Hilton, B.J. and F. Bradke, Can injured adult CNS axons regenerate by recapitulating development? Development, 2017. 144(19): p. 3417-3429.
16. Shi, Y., et al., Overexpression of Mitofusin2 decreased the reactive astrocytes proliferation in vitro induced by oxygen-glucose deprivation/reoxygenation. Neurosci Lett, 2017. 639: p. 68-73.
17. He, Z. and Y. Jin, Intrinsic Control of Axon Regeneration. Neuron, 2016. 90(3): p. 437-51.
18. Mar, F.M., A. Bonni, and M.M. Sousa, Cell intrinsic control of axon regeneration. EMBO Rep, 2014. 15(3): p. 254-63.
19. Mahar, M. and V. Cavalli, Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci, 2018. 19(6): p. 323-337.
20. Lee, J.K., et al., Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J Neurosci, 2009. 29(27): p. 8649-54.
21. Sun, F. and Z. He, Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol, 2010. 20(4): p. 510-8.
22. Fawcett, J.W. and R.A. Asher, The glial scar and central nervous system repair. Brain Res Bull, 1999. 49(6): p. 377-91.
23. Tetzlaff, W., et al., Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci, 1991. 11(8): p. 2528-44.
24. Jin, L.Q., et al., Axon regeneration in the absence of growth cones: acceleration by cyclic AMP. J Comp Neurol, 2009. 515(3): p. 295-312.
25. Storer, P.D., D. Dolbeare, and J.D. Houle, Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res, 2003. 74(4): p. 502-11.
26. Li, Y., et al., Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J Neurosci, 2003. 23(21): p. 7830-8.
27. Fagoe, N.D., J. van Heest, and J. Verhaagen, Spinal cord injury and the neuron-intrinsic regeneration-associated gene program. Neuromolecular Med, 2014. 16(4): p. 799-813.
28. Sachdeva, R., et al., Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol, 2016. 276: p. 72-82.
29. Bomze, H.M., et al., Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci, 2001. 4(1): p. 38-43.
30. Deng, K., et al., Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. J Neurosci, 2009. 29(30): p. 9545-52.
31. Blackmore, M.G., et al., Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci U S A, 2012. 109(19): p. 7517-22.
32. Moore, D.L., et al., KLF family members regulate intrinsic axon regeneration ability. Science, 2009. 326(5950): p. 298-301.
33. Wang, Z., et al., Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci, 2015. 35(7): p. 3139-45.
34. Forstner, P., et al., Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma, 2018. 35(19): p. 2317-2329.
35. White, T.E., et al., Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response. BMC Genomics, 2013. 14: p. 282.
36. Samal, B.B., et al., Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat. J Mol Neurosci, 2015. 57(2): p. 282-303.
37. Natale, J.E., et al., Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma, 2003. 20(10): p. 907-27.
38. Marinkovic, P., et al., In vivo imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model. Brain, 2019.
39. Inoue, T., et al., Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin. Stem Cells, 2006. 24(1): p. 95-104.
40. Komiya, Y. and R. Habas, Wnt signal transduction pathways. Organogenesis, 2008. 4(2): p. 68-75.
41. Zimmerli, D., et al., Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol, 2017. 174(24): p. 4600-4610.
42. Willert, K. and R. Nusse, Wnt proteins. Cold Spring Harb Perspect Biol, 2012. 4(9): p. a007864.
43. Reya, T. and H. Clevers, Wnt signalling in stem cells and cancer. Nature, 2005. 434(7035): p. 843-50.
44. Harland, R. and J. Gerhart, Formation and function of Spemann's organizer. Annu Rev Cell Dev Biol, 1997. 13: p. 611-67.
45. Barker, N., The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol, 2008. 468: p. 5-15.
46. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80.
47. Garcia, A.L., et al., A growing field: The regulation of axonal regeneration by Wnt signaling. Neural Regen Res, 2018. 13(1): p. 43-52.
48. Shah, S.M., et al., Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res, 2013. 304: p. 137-44.
49. Wang, Y. and J. Nathans, Tissue/planar cell polarity in vertebrates: new insights and new questions. Development, 2007. 134(4): p. 647-58.
50. Anna Trzeciecka, T.C., Abigail Hackam,Sanjoy K. Bhattacharya, Lipid profiling dataset of the Wnt3a-induced optic nerve regeneration. Data in Brief, 2019.
51. Patel, A.K., K.K. Park, and A.S. Hackam, Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience, 2017. 343: p. 372-383.
52. Yin, Z.S., et al., Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res, 2008. 30(5): p. 480-6.
53. Saitoh, T., M. Hirai, and M. Katoh, Molecular cloning and characterization of WNT3A and WNT14 clustered in human chromosome 1q42 region. Biochem Biophys Res Commun, 2001. 284(5): p. 1168-75.
54. Tepekoy, F., G. Akkoyunlu, and R. Demir, The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J Assist Reprod Genet, 2015. 32(3): p. 337-46.
55. Cadigan, K.M., et al., Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell, 1998. 93(5): p. 767-77.
56. Lloyd, S., T.P. Fleming, and J.E. Collins, Expression of Wnt genes during mouse preimplantation development. Gene Expr Patterns, 2003. 3(3): p. 309-12.
57. Nalesso, G., et al., WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol, 2011. 193(3): p. 551-64.
58. Dunty, W.C., Jr., et al., Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development, 2008. 135(1): p. 85-94.
59. Yoshinaga, Y., et al., Wnt3a promotes hippocampal neurogenesis by shortening cell cycle duration of neural progenitor cells. Cell Mol Neurobiol, 2010. 30(7): p. 1049-58.
60. Muroyama, Y., H. Kondoh, and S. Takada, Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun, 2004. 313(4): p. 915-21.
61. Kalani, M.Y., et al., Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A, 2008. 105(44): p. 16970-5.
62. Dupont, C., D.R. Armant, and C.A. Brenner, Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med, 2009. 27(5): p. 351-7.
63. Potaczek, D.P., et al., Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics, 2017. 9(4): p. 539-571.
64. Hotchkiss, R.D., The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem, 1948. 175(1): p. 315-32.
65. Ratel, D., et al., N6-methyladenine: the other methylated base of DNA. Bioessays, 2006. 28(3): p. 309-15.
66. Naveh-Many, T. and H. Cedar, Active gene sequences are undermethylated. Proc Natl Acad Sci U S A, 1981. 78(7): p. 4246-50.
67. Waechter, D.E. and R. Baserga, Effect of methylation on expression of microinjected genes. Proc Natl Acad Sci U S A, 1982. 79(4): p. 1106-10.
68. Draizen, E.J., et al., HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants. Database (Oxford), 2016. 2016.
69. Bhasin, M., E.L. Reinherz, and P.A. Reche, Recognition and classification of histones using support vector machine. J Comput Biol, 2006. 13(1): p. 102-12.
70. Kornberg, R.D., Chromatin structure: a repeating unit of histones and DNA. Science, 1974. 184(4139): p. 868-71.
71. Marmorstein, R. and R.C. Trievel, Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta, 2009. 1789(1): p. 58-68.
72. Greer, E.L. and Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet, 2012. 13(5): p. 343-57.
73. Roth, S.Y., J.M. Denu, and C.D. Allis, Histone acetyltransferases. Annu Rev Biochem, 2001. 70: p. 81-120.
74. Parra, M.A. and J.J. Wyrick, Regulation of gene transcription by the histone H2A N-terminal domain. Mol Cell Biol, 2007. 27(21): p. 7641-8.
75. Parra, M.A., et al., Deciphering the roles of the histone H2B N-terminal domain in genome-wide transcription. Mol Cell Biol, 2006. 26(10): p. 3842-52.
76. Rossetto, D., N. Avvakumov, and J. Cote, Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics, 2012. 7(10): p. 1098-108.
77. Creyghton, M.P., et al., Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A, 2010. 107(50): p. 21931-6.
78. Heintzman, N.D., et al., Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 2009. 459(7243): p. 108-12.
79. Rada-Iglesias, A., et al., A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011. 470(7333): p. 279-83.
80. Shlyueva, D., G. Stampfel, and A. Stark, Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet, 2014. 15(4): p. 272-86.
81. Rada-Iglesias, A., Is H3K4me1 at enhancers correlative or causative? Nat Genet, 2018. 50(1): p. 4-5.
82. Local, A., et al., Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet, 2018. 50(1): p. 73-82.
83. Di Cerbo, V., et al., Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife, 2014. 3: p. e01632.
84. Tropberger, P., et al., Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell, 2013. 152(4): p. 859-72.
85. Mersfelder, E.L. and M.R. Parthun, The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res, 2006. 34(9): p. 2653-62.
86. Slepak, T.I., et al., Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem, 2001. 276(10): p. 7575-85.
87. Guertin, M.J., et al., Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol Endocrinol, 2014. 28(9): p. 1522-33.
88. Nord, A.S., et al., Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell, 2013. 155(7): p. 1521-31.
89. Wysocka, J., et al., WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell, 2005. 121(6): p. 859-72.
90. Sims, R.J., 3rd, K. Nishioka, and D. Reinberg, Histone lysine methylation: a signature for chromatin function. Trends Genet, 2003. 19(11): p. 629-39.
91. Flanagan, J.F., et al., Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature, 2005. 438(7071): p. 1181-5.
92. Li, H., et al., Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature, 2006. 442(7098): p. 91-5.
93. Lee, J.E., et al., H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife, 2013. 2: p. e01503.
94. Hu, D., et al., The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 2013. 33(23): p. 4745-54.
95. Blackwood, E.M. and J.T. Kadonaga, Going the distance: a current view of enhancer action. Science, 1998. 281(5373): p. 60-3.
96. Pennacchio, L.A., et al., Enhancers: five essential questions. Nat Rev Genet, 2013. 14(4): p. 288-95.
97. Fishilevich, S., et al., GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford), 2017. 2017.
98. Maston, G.A., S.K. Evans, and M.R. Green, Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet, 2006. 7: p. 29-59.
99. Sawado, T., et al., The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev, 2003. 17(8): p. 1009-18.
100. Bulger, M. and M. Groudine, Functional and mechanistic diversity of distal transcription enhancers. Cell, 2011. 144(3): p. 327-39.
101. Spitz, F. and E.E. Furlong, Transcription factors: from enhancer binding to developmental control. Nat Rev Genet, 2012. 13(9): p. 613-26.
102. Bender, M.A., et al., The hypersensitive sites of the murine beta-globin locus control region act independently to affect nuclear localization and transcriptional elongation. Blood, 2012. 119(16): p. 3820-7.
103. Epner, E., et al., The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell, 1998. 2(4): p. 447-55.
104. Ding, M., et al., Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment. J Cancer, 2018. 9(13): p. 2334-2340.
105. Natoli, G. and J.C. Andrau, Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet, 2012. 46: p. 1-19.
106. Lam, M.T., et al., Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 2013. 498(7455): p. 511-5.
107. De Santa, F., et al., A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol, 2010. 8(5): p. e1000384.
108. Kim, T.K., et al., Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010. 465(7295): p. 182-7.
109. Struhl, K., Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol, 2007. 14(2): p. 103-5.
110. Meng, H. and B. Bartholomew, Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. J Biol Chem, 2018. 293(36): p. 13786-13794.
111. Lai, F., et al., Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature, 2013. 494(7438): p. 497-501.
112. Li, W., et al., Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature, 2013. 498(7455): p. 516-20.
113. Hsieh, C.L., et al., Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A, 2014. 111(20): p. 7319-24.
114. Yang, Y., et al., Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Sci Rep, 2016. 6: p. 20961.
115. Mousavi, K., et al., eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell, 2013. 51(5): p. 606-17.
116. Schaukowitch, K., et al., Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell, 2014. 56(1): p. 29-42.
117. Jiao, W., et al., HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene, 2018. 37(20): p. 2728-2745.
118. NE, I.I., et al., Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun, 2014. 5: p. 3979.
119. Hah, N., et al., Enhancer transcripts mark active estrogen receptor binding sites. Genome Res, 2013. 23(8): p. 1210-23.
120. Melo, C.A., et al., eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell, 2013. 49(3): p. 524-35.
121. Roux, B.T., M.A. Lindsay, and J.A. Heward, Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs. Methods Mol Biol, 2017. 1468: p. 11-8.
122. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): p. 57-74.
123. Pintchovski, S.A., et al., The serum response factor and a putative novel transcription factor regulate expression of the immediate-early gene Arc/Arg3.1 in neurons. J Neurosci, 2009. 29(5): p. 1525-37.
124. Flavell, S.W. and M.E. Greenberg, Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci, 2008. 31: p. 563-90.
125. Lin, Y., et al., Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, 2008. 455(7217): p. 1198-204.
126. Hilton, I.B., et al., Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol, 2015. 33(5): p. 510-7.
127. Yamauchi, T., et al., Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell, 2018. 33(3): p. 386-400 e5.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *