|
Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica. Retrieved from https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
Baer, T. (2019). Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists. Apress
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees Belmont. CA:Wadsworth International Group.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics, 15(3), 651-674.
Hung, T. H.(2018). Investigating the effects of unbalanced predictors on identifying discriminatory predictors, Master's thesis. National Tsing Hua University, Hsinchu, Taiwan
Jokar, P., Arianpoo, N., & Leung, V. C. (2015). Electricity theft detection in AMI using customers’ consumption patterns. IEEE Transactions on Smart Grid, 7(1), 216-226.
Kumar, M., & Sheshadri, H. S. (2012). On the classification of imbalanced datasets. International Journal of Computer Applications, 44(8), 1-7.
Marshall, D. (2013). Recognizing your unconscious bias. Business Matters. Retrieved from https://www.bmmagazine.co.uk/in-business/recognising-unconscious-bias/
Phua, C., Alahakoon, D., & Lee, V. (2004). Minority report in fraud detection: classification of skewed data. Acm sigkdd explorations newsletter, 6(1), 50-59.
Rokach, L., & Maimon, O. (2005). Decision trees. In Data mining and knowledge discovery handbook (pp. 165-192). Springer, Boston, MA.
Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl Jr, K. C. (2017). Data mining for business analytics: concepts, techniques, and applications in R. John Wiley & Sons.
Spanakis, E. K., & Golden, S. H. (2013). Race/ethnic difference in diabetes and diabetic complications. Current diabetes reports, 13(6), 814-823.
Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25.
Suresh, H., & Guttag, J. V. (2019). A Framework for Understanding Unintended Consequences of Machine Learning. arXiv preprint arXiv:1901.10002
Therneau, T. & Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart
Torsten Hothorn, Achim Zeileis (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal of Machine Learning Research, 16, 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html
|