|
[1] Alemi, F., Erdman, H., Griva, I., & Evans, C. H. (2009). Improved statistical methods are needed to advance personalized medicine. The open translational medicine journal, 1, 16. [2] Barry, T. E., & Howard, D. J. (1990). A review and critique of the hierarchy of effects in advertising. International Journal of Advertising, 9(2), 121-135. [3]Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates?. The Quarterly journal of economics, 119(1), 249-275. [4] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. [5] Devriendt, F., Moldovan, D., & Verbeke, W. (2018). A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics. Big data, 6(1), 13-41. [6] Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC bioinformatics, 7(1), 3. [7] Diemert, E., Betlei, A., Renaudin, C., & Amini, M. R. (2018). A Large Scale Benchmark for Uplift Modeling. [8] Gallo, A. (2014). The value of keeping the right customers. Harvard business review, 29. [9] Guelman, L., Guillén, M., & Pérez Marín, A. M. (2014). Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study. UB Riskcenter Working Paper Series, 2014/06. [10] Guelman, L., Guillén, M., & Pérez-Marín, A. M. (2015). Uplift random forests. Cybernetics and Systems, 46(3-4), 230-248. [11] Gutierrez, P., & Gérardy, J. Y. (2017, July). Causal inference and uplift modelling: A review of the literature. In International Conference on Predictive Applications and APIs (pp. 1-13). [12] Han, T. S., & Kobayashi, K. (2002). Mathematics of Information and Coding (Translations of Mathematical Monographs). Amer Mathematical Society. [13] Hansotia, B., & Rukstales, B. (2002). Incremental value modeling. Journal of Interactive Marketing, 16(3), 35. [14] Hillstrom, K. (2008). The MineThatData e-mail analytics and data mining challenge. MineThatData blog. [15] Jaroszewicz, S., Ivantysynova, L., & Scheffer, T. (2008). Schema matching on streams with accuracy guarantees. Intelligent Data Analysis, 12(3), 253-270. [16] Kane, K., Lo, V. S., & Zheng, J. (2014). Mining for the truly responsive customers and prospects using true-lift modeling: Comparison of new and existing methods. Journal of Marketing Analytics, 2(4), 218-238. [17] Lewis, E. S. (1898). AIDA sales funnel. [18] Naranjo, O. M. (2012). Testing a New Metric for Uplift Models. [19] Radcliffe, N. J. (2007). Using control groups to target on predicted lift: Building and assessing uplift models. Direct Market J Direct Market Assoc Anal Council, 1, 14-21. [20] Radcliffe, N. J., & Simpson, R. (2008). Identifying who can be saved and who will be driven away by retention activity. Journal of Telecommunications Management, 1(2). [21] Reichheld, F. (2001). Prescription for cutting costs. Bain & Company. Boston: Harvard Business School Publishing. [22] Rzepakowski, P., & Jaroszewicz, S. (2010, December). Decision trees for uplift modeling. In 2010 IEEE International Conference on Data Mining (pp. 441-450). IEEE. [23] Rzepakowski, P., & Jaroszewicz, S. (2012). Uplift modeling in direct marketing. Journal of Telecommunications and Information Technology, 43-50. [24] Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl Jr, K. C. (2017). Data mining for business analytics: concepts, techniques, and applications in R. John Wiley & Sons. [25] Su, X., Kang, J., Fan, J., Levine, R. A., & Yan, X. (2012). Facilitating score and causal inference trees for large observational studies. Journal of Machine Learning Research, 13(Oct), 2955-2994. [26] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
|