|
Reference
Baesens, B. (2014). Analytics in a big data world: The essential guide to data science and its applications. John Wiley & Sons. Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. Churpek, M. M., Yuen, T. C., Winslow, C., Meltzer, D. O., Kattan, M. W., & Edelson, D. P. (2016). Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Critical care medicine, 44(2), 368. Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: interpreting the forces of innovation, disruption, and transformation in financial services. Journal of Management Information Systems, 35(1), 220-265. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Amsterdam: Elsevier/Morgan Kaufmann. J. Li, S. Hsu, Z. Chen, and Y. Chen, “Risks of p2p lending platforms in china: Modeling failure using a cox hazard model,” The Chinese Economy, vol. 49, no. 3, pp. 161–172, 2016. Lee, E., & Lee, B. (2012). Herding behavior in online P2P lending: An empirical investigation. Electronic Commerce Research and Applications, 11(5), 495-503. Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42(10), 4621-4631. Mezei, J., Byanjankar, A., & Heikkilä, M. (2018). Credit risk evaluation in peer-to-peer lending with linguistic data transformation and supervised learning. Riza Emekter, Yanbin Tu, Benjamas Jirasakuldech & Min Lu (2015) Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending, Applied Economics, 47:1, 54-70, DOI: 10.1080/00036846.2014.962222 Rodriguez-Galiano, V., Luque-Espinar, J., Chica-Olmo, M., & Mendes, M. (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Science of The Total Environment, 624, 661-672. doi:10.1016/j.scitotenv.2017.12.152 Rubini, Agustin. Fintech in a Flash: Financial Technology Made Easy (2018 edition) (p. 23). Banking Innovations. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge: Cambridge University Press. Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl, K. C. (2018). Data mining for business analytics: Concepts, techniques, and applications in R. Hoboken, NJ: John Wiley & Sons. Siddiqi, N. (2012). Credit risk scorecards: developing and implementing intelligent credit scoring (Vol. 3). John Wiley & Sons. Song, P., Chen, Y., Zhou, Z., & Wu, H. (2018). Performance Analysis of Peer-to-Peer Online Lending Platforms in China. Sustainability, 10(9), 2987. Wang H. and Greiner M. E. (2011), “Prosper: the ebay for money in lending 2.0,” Communications of the Asso- ciation for Information Systems, vol. 29, no. 1, p. 13, Wei, S. (2015). Internet lending in China: Status quo, potential risks and regulatory options. Computer Law & Security Review, 31(6), 793-809. Ye, X., Dong, L. A., & Ma, D. (2018). Loan evaluation in P2P lending based on Random Forest optimized by genetic algorithm with profit score. Electronic Commerce Research and Applications, 32, 23-36 Yüzbaşı, B., & Arashi, M. (2019). Double shrunken selection operator. Communications in Statistics-Simulation and Computation, 48(3), 666-674.
|