|
英文部分 1. A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 1-207, 273-286, O'Reilly, 2020 2. A. Kelleher & A. Kelleher. Machine learning in production: developing and optimizing data science workflows and applications, 125-131, Pearson Education, 2019 3. J. J. Beunza, E. Puertas, E. Garcia-Ovejero, G. Villalba, E. Condes, G. Koleva, C. Hurtado, and M. F. Landecho. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease), Journal of Biomedical Informatics, vol. 97, 2019 4. K. Sathya & R. Karthiban. Performance Analysis Of Heart Disease Classification For Computer Diagnosis System, International Conference on Computer Communication and Informatics (ICCCI), pp. 1-7, 2020 5. S. Mohan, C. Thirumalai, and G. Srivastava. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques, IEEE Access, vol. 7, pp. 81542-81554, 2019 6. A. U. Haq, J. P. Li, M. H. Memon, S. Nazir, and R. Sun. A Hybrid Intelligent System Framework for the Prediction of Heart Disease Using Machine Learning Algorithms, Hindawi, vol.2018, 2018 7. V. Kunwar, K. Chandel, A. S. Sabitha , and A. Bansal. Chronic Kidney Disease analysis using data mining classification techniques, 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), Noida, pp. 300-305, 2016 8. S. Bharati, M. A. Rahman and P. Podder. Breast Cancer Prediction Applying Different Classification Algorithm with Comparative Analysis using WEKA, 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh, pp. 581-584, 2018 9. M. Kubat. An Introduction to Machine Learning, 91-133,173-188,211-228 Springer, 2017 10. M. Bowles. Machine Learning in Python : Essential Techniques for Predictive Analysis, 23-120,211-315, WILEY, 2015 11. B. Krawczyk. Learning from imbalanced data: open challenges and future directions, Progress in Artificial Intelligence, vol. 5, pp.221-232, 2016 12. A. Sonak, R. A. Patankar. A Survey on Methods to Handle Imbalance Dataset, IJCSMC, vol. 4, Issue. 11, pp.338-343, 2015 13. K. Black Jr. & H. D. Skipper Jr. Life & Health Insurance, Pearson Education, 1999 中文部分 1. 陳允傑. Python資料科學與人工智慧應用實務, 8-2~10-45,13-2~14-19,16-2~16-9, 旗標出版, 2019 2. 寺田學, 辻真吾, 鈴木たかのり, 福島真太朗,許郁文(譯). 用Python快速上手資料分析與機器學習, 89-262, 碁峰出版, 2019 3. 阮敬. Python數據分析基礎-包含數據挖掘和機器學習, 104-240, 469-494, 五南出版, 2019 4. 劉凡平. 大數據時代的演算法:機器學習、人工智慧及其典型實例, 5-22~5-25, 8-1~8-20, 松崗出版, 2017 5. 趙志勇. Python機器學習算法, 1-26,58-137, 電子工業出版社, 2017 6. 鄭捷. 機器學習概論:機器學習發展+演算法原理實務, 3-24~3-32,6-1~6-41,8-2~8-36,10-14~10-32佳魁資訊, 2020 7. 文淵閣工作室(編著), 鄧文淵(總監製). Python機器學習與深度學習特訓班:看得懂也會做的AI人工智慧實戰, 2-2~2-31 碁峰出版, 2019 8. 李顯正. 金融科技概論, 369-405, 新陸書局, 2018 9. K. Black Jr., H. D. Skipper Jr., 蔡政憲, 吳福山, 陳彩稚, 許文彥, 曾榮秀, 吳旭立, 康裕民, 王儷玲, 許碩芬(合譯). 人壽保險, 295-388, 中華民國人壽保險管理學會, 2004
|