帳號:guest(3.149.25.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪穎真
作者(外文):Hung, Ying-Chen
論文名稱(中文):相關風險貼水:期限結構與股價報酬預測力
論文名稱(外文):Related Variance Risk Premia: Term Structure and Stock Return Predictability
指導教授(中文):曾祺峰
指導教授(外文):Tzeng, Chi-Feng
口試委員(中文):邱婉茜
張焯然
口試委員(外文):Chiu, Wan-Chien
CHANG, JOW-RAN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:106071507
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:47
中文關鍵詞:風險貼水波動度隨機波動度股票報酬預測
外文關鍵詞:Variance risk premiumstochastic volatilityRelated risk premiaStock return predictabilityFear indicator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇研究中,我深入探討了有關波動度的風險溢酬與其成分的特性,藉由利用不同到期日劃分的資料子集,得出了波動度風險溢酬值會隨時間拉長而上升的期限結構,並且我藉由不同預測時間長度的預測檢驗回歸,證明波動度風險溢酬在預測股票超額報酬時,能有顯著的預測能力,且此結果在股票指數和個股上都能成立。
This article examines the properties of the related variance risk premia (VRP): the diffusive variance risk premium (DVRP) and the variance jump risk premium (VJRP) at both index and firm level. Using options data sorted by its maturity, we find a downward term structure of VRP, which is consistent at both levels. We show that VRP can be seen as a proxy for market fear since it is sensitive to extreme economic events. Our predictability test results show strong evidence that these related variance risk premia, along with slope defined as difference long-term component and short-term component, can help predict the excess stock return not only in the short-run horizon but also in long-term up to one year.
1. Introduction 4
2. Methodology 7
2.1 Stochastic volatility model of physical world 7
2.2 Estimation under physical measure 8
2.3 Estimation under risk-neutral approach 9
2.4 Risk premia estimation 11
2.5 Return predictability test 11
3. Data 12
Table 1 13
4. Empirical results 13
4.1 Physical and risk-neutral measure 14
4.1.1 Parameter estimates 14
Figure 1 15
Table 2. 16
Table 3. 16
4.1.2 MCMC states 18
Figure 2. 18
Figure 3. 19
4.2 The related risk premia 20
4.2.1 Static analysis and term structure 20
Table 4. 20
4.2.2 Dynamic analysis at index level 23
Figure 4. 23
Figure 5. 24

4.2.3 Correlation between risk premia 26
Table 5. 26
4.3 Stock return predictability test 27
4.3.1 Index level 28
4.3.2 Firm level 28
5. Conclusion 29
6. Reference 30
7. Appendix 31

Table 6. 32
Table 7. 34
Table 8. 36
Table 9. 38
Table 10. 40
Table 11. 42
Table 12. 44
Table 13. 46
Andersen, T. G., Fusari, N., & Todorov, V. (2015). The risk premia embedded in index options. Journal of Financial Economics, 117(3), 558-584.
Aıt-Sahalia, Y., Karaman, M., & Mancini, L. (2015). The Term Structure of Equity and Variance Risk Premia. Working Paper, Princeton University.
Bollerslev, T., Todorov, V., & Xu, L. (2015). Tail risk premia and return predictability. Journal of Financial Economics, 118(1), 113-134.
Broadie, M., Chernov, M., & Johannes, M. (2007). Model specification and risk premia: Evidence from futures options. The Journal of Finance, 62(3), 1453-1490.
Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump‐diffusions. Econometrica, 68(6), 1343-1376.
Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns. The Journal of Finance, 58(3), 1269-1300.
Fan, R., Taylor, S. J., & Sandri, M. (2018). Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices. Journal of Futures Markets, 38(1), 83-103.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. Chapman and Hall/CRC.
Ignatieva, K., Rodrigues, P., & Seeger, N. (2015). Empirical analysis of affine versus nonaffine variance specifications in jump-diffusion models for equity indices. Journal of Business & Economic Statistics, 33(1), 68-75.
Ju, N., & Zhong, R. (1999). An approximate formula for pricing American options. Journal of Derivatives, 7(2), 31-40.
Li, J., & Zinna, G. (2018). The variance risk premium: Components, term structures, and stock return predictability. Journal of Business & Economic Statistics, 36(3), 411-425.
Neumann, M., Prokopczuk, M., & Simen, C. W. (2016). Jump and variance risk premia in the S&P 500. Journal of Banking & Finance, 69, 72-83.
Rombouts, J. V., Stentoft, L., & Violante, F. (2017). Dynamics of Variance Risk Premia, Investors’ Sentiment and Return Predictability (No. 2017-10). Department of Economics and Business Economics, Aarhus University.
Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics, 127(2), 165-178.
Yun, J. (2014). Out-of-sample density forecasts with affine jump diffusion models. Journal of Banking & Finance, 47, 74-87.
Yun, J. (2011). The role of time-varying jump risk premia in pricing stock index options. Journal of Empirical Finance, 18(5), 833-846.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *