|
一、 英文部分: 1. A. Sonak and R. A. Patankar. “A Survey on Methods to Handle Imbalance Dataset”, In International Journal of Computer Science and Mobile Computing, Vol.4, Issue 11, pp. 338-343, 2015 2. Dr. D. Ramyachitra and P. Manikandan. “Imbalanced Dataset Classification and Solutions:A Review”, IJCBR, Vol. 5, Issue 4, 2014 3. C. Cortes and V. Vapnik. “Support-vector networks”, In Machine Learning, pages 273–297, 1995. 4. B. Krawczyk. “Learning from imbalanced data: open challenges and future directions”, Progress in Artificial Intelligence, vol. 5, pp.221-232, 2016 5. I. Jamali, M. Bazmara and S. Jafari. “Feature Selection in Imbalance data sets”, IJCSI, Vol.9, Issue 3, No 2, 2012 6. R. Quinlan. “Induction of decision trees”, Machine Learning, pp .81–106, 1986. 7. L. Breiman. “Random forests. Machine learning”, 45(1):5–32, 2001. 8. B. Scholkopf and A. Smola. “Support vector machine”, KDD 99 The First Annual International Conference on Knowledge Discovery in Data, pp. 321–357, 2001. 9. J. Davis and M. Goadrich. “The relationship between Precision-Recall and ROC curves”, in 23rd international conference on Machine learning, 2006, pp.233-240
二、 中文部分: 1. 呂承翰, “以機器學習方法解決保險理賠數據集不平衡之問題”, 台大, 2020. 2. 李顯正, “金融科技概論”, 78-119, 新陸書局, 2018. 3. 陳允傑, “Python資料科學與人工智慧應用實務”, 8-2~10-45,13-2~14-19,16-2~16-9, 旗標出版, 2019. 4. S. Raschka, “Python機器學習”, 2-14,91-118,161-190, 博碩文化, 2016. 5. G. Bonaccorso, “初探機器學習演算法”, 146-169, 273-280, 碁峰資訊, 2017. 6. 阮敬, “Python數據分析基礎-包含數據挖掘和機器學習”, 104-240, 469-494, 五南出版, 2019. 7. 趙志勇,” Python機器學習算法”, 1-26,58-137, 電子工業出版社, 2017.
|