帳號:guest(3.15.186.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳庭昱
作者(外文):Chen, Ting-Yu.
論文名稱(中文):以 Copula-GARCH 模型及其他傳統方法估計比特幣投資組合之風險值
論文名稱(外文):Apply Copula-GARCH and Traditional Methods to Estimate VaRs of Bitcoin Portfolios
指導教授(中文):索樂晴
指導教授(外文):So, Leh-Chyan
口試委員(中文):林哲群
蔡錦堂
口試委員(外文):Lin, Che-Chun
Tsay, Jiin-Tarng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:106071501
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:23
中文關鍵詞:關聯結構比特幣風險值
外文關鍵詞:copulabitcoinvalue at risk
相關次數:
  • 推薦推薦:0
  • 點閱點閱:877
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
在衡量投資組合的風險時,風險值是一種常用的方式。在本文中,我們採用copula-GARCH和其他四種傳統方法來看哪一種方法在估計比特幣投資組合的風險值時表現更好,本文以黃金和以太幣分別與比特幣建立投資組合。在copula-GARCH模型中,我們選擇了四個靜態和兩個動態copula模型,結合殘差為Student-t分配的GARCH(1,1)模型,以建構兩個資產的聯合分佈。另外,本文採用的傳統方法為歷史模擬法、變異數共變異數、指數加權移動平均法和GARCH風險值法,我們採用了每種方法來計算一日風險值。本文實證結果顯示,對於由比特幣和以太幣組成的投資組合,copula-GARCH模型在估算風險值的表現優於其餘傳統方法;而對於比特幣和黃金組成的投資組合,傳統方法在估算風險值時表現較好。我們推測可能的原因是,由於比特幣報酬率和黃金報酬率之間的相關性非常低,copula-GARCH模型可能在相關性低的情況下表現不佳。
When it comes to measuring risk of a portfolio, value-at-risk (VaR) is a commonly used way. In this paper, we applied the copula-GARCH method and other traditional methods to determine which one is better for estimating the VaR of portfolios containing Bitcoin. Gold and Ethereum were used to construct a portfolio with Bitcoin respectively. For copula-GARCH model, we selected four constant and two time-varying copula models combined with GARCH Student-t residuals to fit the joint distribution of the two assets in the portfolios. The traditional methods are referred to historical simulation, variance-covariance method, EWMA method and univariate-GARCH VaR method. We adopted each method to compute corresponding one-day VaRs. Our results indicated that, for the portfolio contained Bitcoin and Ethereum, copula-GARCH performed better than traditional methods; while for the portfolio consisted of Bitcoin and gold, traditional methods performed better. The correlation coefficient between Bitcoin and gold is extremely low. Hence, the results inferred that copula-GARCH may not be suitable in the extremely low correlation case.
1 Introduction………………………………………………………………………………………1
2 Methodology…………………………………………………………………………………………3
2.1 Value at Risk……………………………………………………………………………………3
2.1.1 Historical Simulation………………………………………………………………4
2.1.2 Variance-Covariance Method…………………………………………………4
2.1.3 Exponentially Weighted Moving Average……………………4
2.1.4 Univariate GARCH-VaR…………………………………………………………………5
2.2 Copula-GARCH Model………………………………………………………………………5
2.2.1 Sklar’s Theorem………………………………………………………………………………5
2.2.2 Copula Functions……………………………………………………………………………6
2.2.3 Parameter Estimation…………………………………………………………………8
2.2.4 VaR using Copula-GARCH……………………………………………………………9
2.2.5 Back Testing………………………………………………………………………………………9
3 Data…………………………………………………………………………………………………………10
3.1 Portfolio containing Bitcoin and Gold…………………10
3.2 Portfolio containing Bitcoin and Ethereum………10
4 Empirical Results………………………………………………………………………11
4.1 Marginal Distributions…………………………………………………………11
4.2 Copulas…………………………………………………………………………………………………11
4.3 Backtesting of VaR using Five Methods…………………11
5 Conclusion…………………………………………………………………………………………13
References………………………………………………………………………………………………………………14
List of Tables and Figures……………………………………………………………………16

1. Baek, C. and M. Elbeck (2015). Bitcoins as an investment or speculative vehicle? A first look. Applied Economics Letters, 22, 30-34.
2. Bouoiyour, J. and R. Selmi (2016). Bitcoin: A beginning of a new phase. Economics Bulletin, 36 (3), 1430-1440.
3. Bouri, E., P. Molnár, G. Azzi, D. Roubaud and L. Hagfors (2016). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192-198.
4. Bouri, E., N.P. Jalkh, P. Molnár and D. Roubaud (2017). Bitcoin for Energy Commodities Before and After the December 2013 Crash: Diversifier, Hedge or Safe Haven? Applied Economics, 49 (1), 1-11.
5. Baur, D., T. Dimpfl and K. Kuck (2018). Bitcoin, gold and the US dollar–A replication and extension. Finance Research Letters, 25, 103-110.
6. Chuen, K., D. Lee, L. Guo and Y. Wang (2017). Cryptocurrency: A new investment opportunity? SSRN: 2994097.
7. Clayton, D.G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141–151.
8. Dyhrberg, A.H. (2016a). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
9. Dyhrberg, A.H. (2016b). Hedging Capabilities of Bitcoin. Is it the virtual gold? Finance Research Letters, 16, 139-144.
10. Eisl, A., S. Gasser and K. Weinmayer (2015). Caveat emptor: does Bitcoin improve portfolio diversification? SSRN: 2408997.
11. Hansen, P.R. and A. Lunde (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? Journal of applied econometrics, 20, 873-889.
12. Huang, J.J. and L.C. SO (2018). Application of Copula-GARCH to Estimate VaR of a Portfolio with Credit Default Swaps. Journal of Mathematical Finance, 8, 382-407.
13. Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94(2), 401–419.
14. Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3(2).
15. Klein, T., H.P. Thu and T. Walther (2018). Bitcoin is not the New Gold–A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis, 59, 105-116.
16. Lu, X.F., K.K. Lai and L. Liang (2014). Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model. Annals of Operations Research, 219, 333–357.
17. McAleer, M. (2014). Asymmetry and leverage in conditional volatility models. Econometrics, 2 (3), 145–150.
18. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
19. Patton, A.J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.
20. Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Université Paris, Paris, 8.
21. So, L.C. and J.Y. Yu (2015). Improved Detection of Rare-Event Risk of a Portfolio with U.S. REITs. Annals of Financial Economics, 10, Article ID: 1550015.
22. Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, 159, 145-148.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *