帳號:guest(18.218.75.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范氏秋水
作者(外文):Pham Thi Thu Thuy
論文名稱(中文):氮化矽光子元件結合超薄矽p-i-n光電二極體用於980奈米波長光偵測器
論文名稱(外文):Si3N4 photonics integrated with ultra-thin Si p-i-n photodiodes for optical detection at wavelength of 980 nm
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang M.
口試委員(中文):王立康
李明昌
古凱寧
口試委員(外文):Wang, Li-Karn
Lee, Ming-Chang
Ku, Kai-Ning
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066710
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:54
中文關鍵詞:光電
外文關鍵詞:Photodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,在通信中使用可見光和近紅外波長的集成光子器件的需求已大大增加。光電探測器是系統中的關鍵設備,引起了廣泛的關注。增強其性能的所有方法之一是將低損耗Si3N4波導與Si檢測器集成在一起,從而顯著提高了響應特性。在這項研究中,我們專注於在絕緣體上矽(SOI)平台上工作於980 nm波長的Si p-i-n探測器結合Si3N4波導的開發。該設備由軟件設計和仿真,最終由TSRI製造。我們指出在15 V反向偏置下該器件的實測器件響應度為0.27 A.W ^(-1)。實驗結果總結並表明了本徵區和探測器長度的變化對光電流和響應度的影響。本文還對一些捏造的問題和解釋進行了說明
In recent years, the demand for the usage of integrated photonic devices at visible and near IR wavelengths in communication has significantly increased. The photodetector is a crucial device in the system and has attracted much attention. One of all approach for an enhancement of its performance is an integration of a low loss Si3N4 waveguide with Si detector, which improves considerably the responsivity characteristic. In this research, we concentrate on the development of a Si p-i-n detector combined Si3N4 waveguide on a silicon-on-insulator (SOI) platform, which is operated at a wavelength of 980 nm. The device was designed and simulated by software, eventually, fabricated in TSRI. We indicate a measured device responsivity of 0.27 A.W^(-1) at 15 V reverse bias for the device. The change of intrinsic region and detector length effect on photocurrent and responsivity, which is summarized and shows by experimental result. Some fabricated issues and the explanation also are demonstrated in this thesis.
Abstract i
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
List of Figures vi
List of Tables viii
Chapter 1: Introduction 1
1.1. Background 1
1.2. Objectives 3
1.3. Thesis organization 4
Chapter 2: Principle and structure design 5
2.1. LiDAR technology 5
2.2. Introduction to PIN lateral structure 6
2.2.1. Light absorption mechanism 7
2.2.2. Lateral p-i-n photodetector 8
2.2.3. Characteristic and photodetector parameters 12
2.3. The application of silicon and silicon nitride materials to infrared optical components 15
2.3.1. The passive components 16
2.3.2 The active component 19
Chapter 3: Device Design and Simulation 21
3.1. Device Design 21
3.2. Optical simulation of the photodetector 23
3.2.1. Silicon nitride waveguide and hybrid-mode waveguide 23
3.2.2. Edge coupler 26
3.2.3. Si3N4 waveguide integrated Si photodetector 28
3.3. Electrical simulation of the photodetector 30
Chapter 4: Fabrication Process 33
4.1 Process flow 33
4.2. Image of fabricated devices 35
5.1. Coupling loss and waveguide loss of Si3N4 waveguide 38
5.2. I-V curve measurement 39
5.2.1. The dark current measurement 42
5.2.2. The photocurrent measurement and the responsivity characteristic 44
CHAPTER 6: Conclusion and Future work 51
6.1. Conclusion 51
6.2. Future work 51
Reference 53
1. Chatterjee, A. and S.K. Selvaraja. Waveguide integration silicon MSM photodetector in silicon nitride-on-SOI platform for visible and NIR wavelength band. in Optical Components and Materials XV. 2018. International Society for Optics and Photonics.
2. Gunther Roelkens 1, *, Amin Abassi 1,2, Paolo Cardile 3, Utsav Dave 1,2, Andreas de Groote 1,2, and Yannick de Koninck 1, Sören Dhoore 1,2, Xin Fu 1,2, Alban Gassenq 1,2, Nannicha Hattasan 1,2, III-V-on-silicon photonic integrated circuits for optical communication and sensing.
3. Chazette, P., et al., Principle and Physics of the LiDAR Measurement. 2016. p. 201-247.
4. Avijit Chatterjee, S., Sujit Kumar Sikdar, and Shankar Kumar Selvaraja, High-speed waveguide integrated silicon photodetector on a SiN-SOI platform for short reach datacom. 2019.
5. Yikai Su, Y.Z., Ciyuan Qiu, Xuhan Guo, and Lu Sun, Silicon Photonic Platform for Passive Waveguide Devices: Materials, Fabrication, and Applications. Advanced material technology, 2020.
6. Subramanian, A.Z., et al., Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line. IEEE Photonics Journal, 2013. 5(6): p. 2202809-2202809.
7. Kaplan, M.a.V., Peter, Soft tissue 10.6 micrometers CO2 laser orthodontic procedures. 2015(Orthodontic Practice US 6 (6), 59-64).
8. LIDAR FOR AUTOMOTIVE APPLICATIONS. 2012.
9. aaaaaa, lidar_webinar_12.6.17.
10. Liu, J.-m., Photonic Devices. 2005, Cambridge: Cambridge University Press.
11. P Susthitha Menon a/p N V Visvanathan, S.S. Development of silicon planar P-I-N photodiode. 2018.
12. Xu, Q., D. Fattal, and R.G. Beausoleil, Silicon microring resonators with 1.5-µm radius. Optics Express, 2008. 16(6): p. 4309-4315.
13. Yong Zhang1, Y.H., Xinhong Jiang1, Boyu Liu1, Ciyuan Qiu1, Yikai Su1,a), and Richard A. Soref2, Ultra-compact and highly efficient silicon polarization splitter and rotator.
14. Payne, F.P. and J.P.R. Lacey, A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics, 1994. 26(10): p. 977-986.
15. James Byers, K.D., Hideo Arimoto, M. Khaled Husain, Moise Sotto, Zuo Li, Fayong Liu, Kouta Ibukuro, Ali Khokhar, Kian Kiang, Stuart A. Boden, David J. Thomson, Graham T. Reed, and Shinichi Saito, Silicon slot fin waveguide on bonded double-SOI for a low-power accumulation modulator fabricated by an anisotropic wet etching technique.
16. Horikawa, T., D. Shimura, and T. Mogami, Low-loss silicon wire waveguides for optical integrated circuits. MRS Communications, 2016. 6(1): p. 9-15.
17. Orobtchouk, R., et al., High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide. Applied Optics, 2000. 39(31): p. 5773-5777.
18. Van Laere, F., et al., Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides. Journal of Lightwave Technology, 2007. 25(1): p. 151-156.
19. Benedikovic, D., et al., High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Optics Letters, 2015. 40(18): p. 4190-4193.
20. Tang, Y., et al., Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010. 35(8): p. 1290-1292.
21. Doerr, C.R., et al., Wide Bandwidth Silicon Nitride Grating Coupler. IEEE Photonics Technology Letters, 2010. 22(19): p. 1461-1463.
22. Sacher, W.D., et al., Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler. Optics Express, 2014. 22(9): p. 10938-10947.
23. Li, G., et al., Over 10 GHz lateral silicon photodetector fabricated on silicon-on-insulator substrate by CMOS-compatible process. Japanese Journal of Applied Physics, 2015. 54: p. 04DG06.
24. Tasirin, S., et al., High performance silicon lateral PIN photodiode. IOP Conference Series: Earth and Environmental Science, 2013. 16: p. 2032.
25. Chen, L., P. Dong, and M. Lipson, High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics express, 2008. 16: p. 11513-8.
26. Mishra, P., et al., Implementation of lateral Ge–on–Si heterojunction photodetectors via rapid melt growth and self-aligned microbonding for Si photonics. Japanese Journal of Applied Physics, 2019. 58: p. SJJC02.
27. Shi, J.-W., Y.-H. Liu, and C. Liu, Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors. Lightwave Technology, Journal of, 2004. 22: p. 1583-1590.
28. Chih-Kuo-Tseng, High Speed and Low Breakdown Voltage Germanium Silicon Avalanche Photodetectors.
29. William, K.J., Effects of High Space-Charge Fields on the Response of Microwave Photodetectors.
(此全文20260202後開放外部瀏覽)
Electronic full text
Summary in Both English and Chinese
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *