|
1. Convery N., Gadegaard N. 30 years of microfluidics. Micro and Nano Engineering 2, 76-91, (2019).
2. Rackus DG, Ridel-Kruse IH., Pamme N. Learning on a chip: Microfluidics for formal and informal science eduction., Biomicrofluidics. 13, 041501. (2019).
3. C.H. Legge, Chemistry under the microscope-Lab-on-a-Chip Technologies. J. Chem. Educ. 79, 173, (2002).
4. Fintschenko Y. Education: a modular approach to microfluidics in the teaching laboratory Lab Chip 11, 3394, (2011).
5. Mugele F., Baret J-C., Electrowetting: from basics to applications. J Phys. Condens. Matter. 17 705-774, (2005).
6. Teerasong and R. L. McClain, J. Chem. Educ. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis,88(4), 465–467 (2011).
7. L. Cai, Y. Wu, C. Xu, and Z. Chen, J. Chem. Educ. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract,90(2), 232–234 (2013).
8. T. A. Davis, S. L. Athey, M. L. Vandevender, C. L. Crihfield, C. C. E. Kolanko, S. Shao, M. C. G. Ellington, J. K. Dicks, J. S. Carver, and L. A. Holland, J. Chem. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics, Educ. 92(1), 116–119 (2015).
9.Nguyen, J. McLane, V. Lew, J. Pegan, and M. Khine , Shrink-film microfluidic education modules: Complete devices within minutes, Biomicrofluidics 5(2),022209 (2011).
10. L. E. Stallcop, Y. R. Álvarez-García, A. M. Reyes-Ramos, K. P. Ramos-Cruz, M. M. Morgan, Y. Shi, L. Li, D. J. Beebe, M. Domenech, and J. W. Warrick, Razor-printed sticker microdevices for cell-based applications , Lab Chip 18(3), 451–462 (2018).
11. C. E. Owens and A. J. Hart, High-precision modular microfluidics by micromilling of interlocking injection-molded blocks, Lab Chip 18(6), 890–901 (2018).
12.D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Recent developments in paper-based microfluidic devices, Anal. Chem. 87(1), 19–41 (2015).
13. Lippmann G Relations entre les phenomenes electriques et capillary Ann. Chim. Phys. GABRIEL LIPPMANN AND THE CAPILLARY ELECTROMETER, 6 494, (1875).
14. Berge B Electrocapillarite et mouillge de films isolant par l’eau C. R. Acad. Sci. II 317 157 (1993).
15. Pollack M. G., Fair R. B. Shenderov A.D. Electrowetting-based actuation of liquid droplets for microfluidics applications. Appl. Phys. Lett. 77 1725, (2000).
16. Lee J., Kim C.J. Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Syst. 9, 171, (2000).
17. Choi K., Ng A.H.C., Fobel R., Wheeler A.R. Digital Microfluidics Annu. Rev. Anal. Chem. 5, 413-440, (2012).
18. Jebrail MJ, Wheeler AR. Let’s get digital: digitizing chemical biology with microfluidics. Curr.Opin. Chem. Biol. 14, 574–81, (2000).
19. Pollack MG, Pamula VK, Srinivasan V, Eckhardt AE. 2011. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev. Mol. Diagn. 11 393–407 (2011).
20. Abdelgawad M., Wheeler A. R. Rapid prototyping in copper substrates for digital microfluidics. Advanced Materials. 19 , 133–37 (2007).
21.Abdelgawad M., Wheeler A. R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluidics and Nanofluidics. 4, 349–355 (2008).
22. Fobel, R., Fobel, C., Wheeler, A. R. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters. 102, 193513 (2013).
23.Yafia M., Ahmadi A., Hoorfar, M., Najjaran, H. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly. Micromachines. 1289–1305 (2015).
24. Alistar M., Gaudenz U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering. 4, 45 (2017).
25. Khan P. et al. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied Biochemistry and Biotechnology. 173, 333–355 (2014).
26. Agresti J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Nat. Acad. Sci. 107, 4004–4009 (2010).
27. https://www.microfluidic-chipshop.com/catalogue/instruments/partnerinstruments/dropbot-digital-microfluidic-control-system). accessed on Oct 10, 2020,
28. Busnel J.M., Varenne, A., Descroix S., Peltre, G., Gohon Y., Gareil, P., Evaluation of capillary isoelectric focusing in glycerol-water media with a view to hydrophobic protein applications, Electrophoresis. 26, 3369–3379, (2005).
29. Chatterjee D., Shepherd H., Garrell R.L. Electromechanical model for actuating liquids in a two plate droplet microfluidic device. Lab Chip 9 1219–29, (2009).
30. H. J. J. Verheijen and M. W. J. Prins, Reversible Electrowetting and Trapping of Charge: Model and Experiments , Langmuir 1999, 15, 6616-6620, (1999)
31. Immersed AC electrospray (iACE) for monodispersed aqueous droplet generation Zehao Pan, Yongfan Men, Satyajyoti Senapati, and Hsueh-Chia Chang, China, BIOMICROFLUIDICS 12, 044113 (2018)
|