帳號:guest(3.21.21.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭育豪
作者(外文):Guo, Yu-Hao
論文名稱(中文):基於數位微流體液滴驅動可應用於正式與非正式科學教育的低成本多功能套件
論文名稱(外文):A low cost, versatile kit based on digital microfluidics droplet actuation for formal and informal science education
指導教授(中文):楊雅棠
黃承彬
指導教授(外文):Yang, Ya-Tang
Huang, Chen-Bin
口試委員(中文):何宗易
莊嘉揚
口試委員(外文):Ho, Tsung-Yi
Juang, Jia-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066536
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:61
中文關鍵詞:電濕潤數位微流體同步微流體驅動化學教育晶片實驗室教育工具
外文關鍵詞:electrowettingdigital microfluidicscommunity driven microfluidicschemical educationlab on a chipeducation tool
相關次數:
  • 推薦推薦:0
  • 點閱點閱:572
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文介紹了一種基於數位微流體控制技術的教學套件。並利用化學發光的魯米諾化學式為實例。它還具有螢光成像功能和配備超聲波霧化器的封閉加濕外殼,以防止蒸發。該套件可在短時間內組裝,並且只需要基礎的電子和焊接培訓。該套件使本科和非本科學生,甚至有興趣的人都能以直觀的方式獲得動手操作,並接受培訓以熟悉數位微流體控制技術。
This paper describes an education kit based on digital microfludics. A protocol for luminol-based chemiluminescence experiment is reported as a specific example. It also has fluorescent imaging capability and closed humidified enclosure based on an ultrasonic atomizer to prevent evaporation. The kit can be assembled within a short period of time and with minimal training in electronics and soldering. The kit allows both undergraduate/graduate students and enthusiasts to obtain hands-experience microfluidics in an intuitive way and be trained to gain familiarity with digital microfluidics.
誌謝-----------------------------------II
中文摘要--------------------------------III
Abstract-------------------------------IV
目錄-----------------------------------V
圖目錄---------------------------------VII
表目錄---------------------------------IX
一、緒論--------------------------------1
1-1研究動機-----------------------------1
1-2文獻回顧-----------------------------6
1-2-1微流體實驗製作方法------------------6
1-2-2液滴驅動電路板的建構----------------11
1-2-3 建立簡易且便宜的螢光成像-----------14
二、材料及方法--------------------------15
2-1製作魯米諾實驗樣本--------------------15
2-2製作螢光樣本-------------------------16
2-3微流體控制套件的組裝------------------17
2-4超聲波霧化器的長期液滴驅動實驗---------19
2-5溫溼度環境設計機制--------------------20
2-6系統設計-----------------------------21
2-6-1 電濕潤(EWOD)概念------------------21
2-6-2升壓系統---------------------------25
2-6-3控制電路---------------------------26
2-6-4電路板設計--------------------------27
2-6-5 Arduino程式編譯-------------------30
三、實驗結果-----------------------------32
3-1實驗前準備步驟------------------------32
3-2 魯米諾的化學發光實驗------------------33
3-3 螢光成像實驗-------------------------34
3-4超聲波霧化器的長期液滴驅動實驗結果------35
3-5 套件的穩定性測試----------------------37
四、結論及討論---------------------------39
附錄-------------------------------------40
A-1 Arduino 程式碼-----------------------40
A-2壓克力盒設計圖------------------------46
A-3 NE555P精密計時器的高壓電路------------50
參考文獻---------------------------------56
1. Convery N., Gadegaard N. 30 years of microfluidics. Micro and Nano Engineering 2, 76-91, (2019).

2. Rackus DG, Ridel-Kruse IH., Pamme N. Learning on a chip: Microfluidics for formal and informal science eduction., Biomicrofluidics. 13, 041501. (2019).

3. C.H. Legge, Chemistry under the microscope-Lab-on-a-Chip Technologies. J. Chem. Educ. 79, 173, (2002).

4. Fintschenko Y. Education: a modular approach to microfluidics in the teaching laboratory Lab Chip 11, 3394, (2011).

5. Mugele F., Baret J-C., Electrowetting: from basics to applications. J Phys. Condens. Matter. 17 705-774, (2005).

6. Teerasong and R. L. McClain, J. Chem. Educ. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis,88(4), 465–467 (2011).

7. L. Cai, Y. Wu, C. Xu, and Z. Chen, J. Chem. Educ. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract,90(2), 232–234 (2013).

8. T. A. Davis, S. L. Athey, M. L. Vandevender, C. L. Crihfield, C. C. E. Kolanko,
S. Shao, M. C. G. Ellington, J. K. Dicks, J. S. Carver, and L. A. Holland, J. Chem. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics, Educ. 92(1), 116–119 (2015).

9.Nguyen, J. McLane, V. Lew, J. Pegan, and M. Khine , Shrink-film microfluidic education modules: Complete devices within minutes, Biomicrofluidics 5(2),022209 (2011).

10. L. E. Stallcop, Y. R. Álvarez-García, A. M. Reyes-Ramos, K. P. Ramos-Cruz,
M. M. Morgan, Y. Shi, L. Li, D. J. Beebe, M. Domenech, and J. W. Warrick, Razor-printed sticker microdevices for cell-based applications , Lab Chip 18(3), 451–462 (2018).

11. C. E. Owens and A. J. Hart, High-precision modular microfluidics by
micromilling of interlocking injection-molded blocks, Lab Chip 18(6), 890–901 (2018).

12.D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Recent developments in paper-based microfluidic devices, Anal. Chem. 87(1), 19–41 (2015).

13. Lippmann G Relations entre les phenomenes electriques et capillary Ann. Chim. Phys. GABRIEL LIPPMANN AND THE CAPILLARY ELECTROMETER, 6 494, (1875).

14. Berge B Electrocapillarite et mouillge de films isolant par l’eau C. R. Acad. Sci. II 317 157 (1993).

15. Pollack M. G., Fair R. B. Shenderov A.D. Electrowetting-based actuation of liquid droplets for microfluidics applications. Appl. Phys. Lett. 77 1725, (2000).

16. Lee J., Kim C.J. Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Syst. 9, 171, (2000).

17. Choi K., Ng A.H.C., Fobel R., Wheeler A.R. Digital Microfluidics Annu. Rev. Anal. Chem. 5, 413-440, (2012).

18. Jebrail MJ, Wheeler AR. Let’s get digital: digitizing chemical biology with microfluidics. Curr.Opin. Chem. Biol. 14, 574–81, (2000).

19. Pollack MG, Pamula VK, Srinivasan V, Eckhardt AE. 2011. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev. Mol. Diagn. 11 393–407 (2011).

20. Abdelgawad M., Wheeler A. R. Rapid prototyping in copper substrates for digital microfluidics. Advanced Materials. 19 , 133–37 (2007).

21.Abdelgawad M., Wheeler A. R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluidics and Nanofluidics. 4, 349–355 (2008).

22. Fobel, R., Fobel, C., Wheeler, A. R. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters. 102, 193513 (2013).

23.Yafia M., Ahmadi A., Hoorfar, M., Najjaran, H. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly. Micromachines. 1289–1305 (2015).

24. Alistar M., Gaudenz U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering. 4, 45 (2017).

25. Khan P. et al. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied Biochemistry and Biotechnology. 173, 333–355 (2014).

26. Agresti J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Nat. Acad. Sci. 107, 4004–4009 (2010).

27. https://www.microfluidic-chipshop.com/catalogue/instruments/partnerinstruments/dropbot-digital-microfluidic-control-system). accessed on Oct 10, 2020,

28. Busnel J.M., Varenne, A., Descroix S., Peltre, G., Gohon Y., Gareil, P., Evaluation of capillary isoelectric focusing in glycerol-water media with a view to hydrophobic protein applications, Electrophoresis. 26, 3369–3379, (2005).

29. Chatterjee D., Shepherd H., Garrell R.L. Electromechanical model for actuating liquids in a two plate droplet microfluidic device. Lab Chip 9 1219–29, (2009).

30. H. J. J. Verheijen and M. W. J. Prins, Reversible Electrowetting and Trapping of Charge: Model and Experiments , Langmuir 1999, 15, 6616-6620, (1999)

31. Immersed AC electrospray (iACE) for monodispersed aqueous droplet generation
Zehao Pan, Yongfan Men, Satyajyoti Senapati, and Hsueh-Chia Chang, China, BIOMICROFLUIDICS 12, 044113 (2018)

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *