帳號:guest(3.135.216.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許峯銘
作者(外文):Hsu, Feng-Ming
論文名稱(中文):光感DNA奈米粒子複合物成長機制及DNA元件膜厚相依特性之研究
論文名稱(外文):Study of growth mechanisms in photoreduced DNA nanoparticle composite and thickness-dependent properties of DNA devices
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):莊偉綜
金雅琴
口試委員(外文):Chuang, Wei-Tsung
King, Ya-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066534
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:電阻式記憶體奈米粒子成長機制
外文關鍵詞:DNAresistivememory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:269
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本研究第一部分中,我們藉由不同時間分布的小角度X光散射圖去探討以光還原法還原的銀奈米粒子在DNA-CTMA及PMMA複合物中的生長情形,接著將DNA-CTMA與PMMA系統的小角度X光散射圖數據分別以硬球模型與多硬球模型進行擬合,擬合的結果表示兩個系統的成長特性,包含粒子大小、均勻性以及分布都有明顯差異,而從紫外光-可見光光譜儀的吸收光譜以及穿透式電子顯微鏡的形貌分析也得到一致的結果,基於上述的實驗分析,我們描繪出個別系統的成長機制並且解釋銀奈米粒子的成核成長。
第二部分中我們以DNA-CTMA為中間層材料作簡單三明治結構的電阻式記憶體元件,並且探討不同薄膜厚度與電性分布之間的關聯性,我們接著從材料特性上著手,利用掠角小角度X光散射圖、交流阻抗分析儀與動態光散射分別分析四種不同膜厚的特性,最後再將電性圖轉成對數座標進行線性擬合,分析元件的電阻轉換機制,部分的結果顯示出膜厚與電性之間的相關並且提供了從材料物理性質上分析元件的可能性。
In the first part of this study, by time resolved small angle X-ray scattering (SAXS), we characterized the in situ formation of silver nanoparticles(AgNPs) in two polymer matrix systems, DNA-CTMA and PMMA, where AgNPs were synthesized in the presence of polymer matrix by a photoreduction process. The experimental SAXS profiles of the DNA-CTMA system and PMMA system under photo-irradiation up to one hour were fitted by the hard-sphere model and poly-hard-sphere model, respectively. The analyses revealed several different properties of AgNPs formation between these two systems, including particles size, uniformity, and distribution. The optical and morphological properties of the two systems were also studied and are in line with the SAXS measurements. Based on the characterization results, we propose possible formation growing processes and mechanisms to explain the formation of AgNPs for both systems.
In the second part of the study, we carried out measurements for DNA-CTMA resistive switching devices in order to look for possible mechanisms to explain the thickness-dependent resistive switching behaviors. The DNA devices consist of a simple DNA-CTMA layer sandwiched by two electrodes. We conducted several characterizations for devices with different thickness DNA-CTMA layer, including GI-SAXS, dielectric spectroscopy, and dynamic light scattering. The switching curves were also fitted by different models to examine the switching mechanisms. These results show some correlation with thickness-dependent electrical properties, which provide informative physical insights toward the thickness-dependent behaviors of DNA devices.
第一章 緒論 p.1
1.1 前言 p.1
1.2 DNA介紹及應用 p.1
1.3 奈米材料簡介與應用 p.3
1.4 小角度X光散射簡介p.6
1.5 電阻式記憶體介紹 p.8
1.6 研究動機 p.16.

第二章 實驗方法 p.17
2.1 材料及實驗樣品製備 p.17
2.2 特性量測儀器 p.21

第三章 光還原奈米複合物成長與趨勢分析 p.25
3.1 銀奈米粒子分析 p.25
3.2 成長趨勢分析 p.30
3.3 成長趨勢討論 p.35

第四章 電阻式記憶體薄膜厚度與電性探討 p.38
4.1 不同薄膜厚度的記憶體元件特性 p.38
4.2 DNA-CTMA薄膜特性探討 p.41
4.3 電流傳導機制分析 p.45

第五章 結果與未來展望 p.49
參考文獻 p.50
[1] A. Travers and G. Muskhelishvili, DNA structure and function,” The FEBS Journal , vol. 282, no. 12 pp. 2279{2295, 2015.
[2] J. Xiao, P. Liu, Y. Liang, H. Li, and G. Yang, High aspect ratio -MnO2 nanowires and sensor performance for explosive gases,” Journal of Applied Physics, vol. 114, no. 7, p. 073513, 2013.
[3] R. Liu, H. Wang, X. Li, G. Ding, and C. Yang, A micro-tensile method for mea2012. [4]J.Xiao,P.Liu,Y.Liang,H.Li,andG.Yang, Poroustungstenoxidenano akesforhighlyalcoholsensitiveperformance,"Nanoscale,vol.4,no.22,pp.7078{7083, 50
[5] P. Liu, Y. Liang, X. Lin, C. Wang, and G. Yang, A general strategy to fabricate simple polyoxometalate nanostructures: electrochemistry-assisted laser ablation in liquid,” ACS Nano, vol. 5, no. 6, pp. 4748{4755, 2011.
[6] Y. Xia, K. D. Gilroy, H.-C. Peng, and X. Xia, Seed-mediated growth of colloidal metal nanocrystals,” Angewandte Chemie International Edition, vol. 56, no. 1, pp. 60{95, 2017.
[7] J. DeRouchey, R. Netz, and J. Radler, Structural investigations of dna-polycation complexes,” The European Physical Journal E, vol. 16, no. 1, pp. 17{28, 2005. suringmechanicalpropertiesofmemsmaterials,"JournalofMicromechanicsandMicroengineering,vol.18,no.6,p.065002,2008.
[8] A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching e ect in thin oxide lms for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139{141, 2000.
[9] C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, and H. Wang, Physical mechanism and performance factors of metal oxide based resistive switching memory: a review,” Journal of Materials Science & Technology, vol. 32, no. 1, pp. 1{11, 2016.
[10] J. S. Lee, S. Lee, and T. W. Noh, Resistive switching phenomena: A review of statistical physics approaches,” Applied Physics Reviews, vol. 2, no. 3, p. 031303, 2015.
[11] S. Rehman, M. F. Khan, S. Aftab, H. Kim, J. Eom, and D.-k. Kim, Thicknessdependent resistive switching in black phosphorus CBRAM,” Journal of Materials Chemistry C, vol. 7, no. 3, pp. 725{732, 2019.
[12] Z.-J. Yang, Study of size-dependent bipolar resistive switching responses of modied biopolymer devices,” PhD dissertation, National TSING HUA University, Institute of Photonics Technologies, 2018.
[13] S. Chandrasekaran, F. M. Simanjuntak, and T.-Y. Tseng, Controlled resistive switching characteristics of ZrO2-based electrochemical metallization memory devices by modifying the thickness of the metal barrier layer,” Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE10, 2018.
[14] S. H. Park, M. W. Prior, T. H. LaBean, and G. Finkelstein, Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules,” Applied Physics Letters, vol. 89, no. 3, p. 033901, 2006. 51
[15] M. R. Kesama, S. R. Dugasani, S. Yoo,P. Chopade, B. Gnapareddy, and S. H. Park, Morphological and optoelectronic characteristics of double and triple lanthanide ion-doped DNA thin lms,” ACS Applied Materials & Interfaces, vol. 8, no. 22, pp. 14109{14117, 2016.
[16] A. J. Steckl, DNA{a new material for photonics?,” Nature Photonics, vol. 1, no. 1, p. 3, 2007.
[17] B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon dna thin lms,” Scienti
c Reports, vol. 5, p. 12722, 2015.
[18] V. Arasu, S. R. Dugasani, M. R. Kesama, H. K. Chung, and S. H. Park, Luminophore conguration and concentration-dependent optoelectronic characteristics of a quantum dot-embedded dna hybrid thin lm,” Scientic reports, vol. 7, no. 1, p. 11567, 2017.
[19] C. Yumusak, T. B. Singh, N. Sariciftci, and J. Grote, Bio-organic eld e ect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric,” Applied Physics Letters, vol. 95, no. 26, p. 341, 2009.
[20] M. R. Kesama, B. K. Yun, T. Ha, S. R. Dugasani, J. Son, J. H. Kim, J. H. Jung, and S. H. Park, Magneto-optical and thermal characteristics of magnetite nanoparticle-embedded DNA and CTMA-DNA thin lms,” Nanotechnology, vol. 29, no. 46, p. 465703, 2018.
[21] J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science, vol. 301, no. 5641, pp. 1884{1886, 2003. 52
[22] R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and H. Yan, DNA self-assembly for nanomedicine,” Advanced Drug Delivery Reviews, vol. 62, no. 6, pp. 617{625, 2010.
[23] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, The golden age: gold nanoparticles for biomedicine,” Chemical Society Reviews, vol. 41, no. 7, pp. 2740{2779, 2012.
[24] V. Amendola and M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Physical Chemistry Chemical Physics, vol. 11, no. 20, pp. 3805{3821, 2009.
[25] M.-C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293{346, 2004.
[26] C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1721{1730, 2008.
[27] L. A. Austin, B. Kang, and M. A. El-Sayed, Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review,” Nano Today, vol. 10, no. 5, pp. 542{558, 2015.
[28] P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307– 1315, 2008.
[29] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, no. 5, pp. 2739{2779, 2012. 53
[30] E. Di Fabrizio, S. Schlucker, J. Wenger, R. Regmi, H. Rigneault, G. Calaore, M. West, S. Cabrini, M. Fleischer, N. F. Van Hulst, et al., Roadmap on biosensing and photonics with advanced nano-optical methods,” Journal of Optics, vol. 18, no. 6, p. 063003, 2016.
[31] K. Niu, J. Yang, S. Kulinich, J. Sun, and X. Du, Hollow nanoparticles of metal oxides and suldes: Fast preparation via laser ablation in liquid,” Langmuir, vol. 26, no. 22, pp. 16652{16657, 2010.
[32] T. Tsuji, Y. Okazaki, Y. Tsuboi, and M. Tsuji, Nanosecond time-resolved observations of laser ablation of silver in water,” Japanese Journal of Applied Physics, vol. 46, no. 4R, p. 1533, 2007.
[33] S. Petersen and S. Barcikowski, In situ bioconjugation: Single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation,” Advanced Functional Materials, vol. 19, no. 8, pp. 1167{1172, 2009.
[34] P. Liu, C. Wang, X. Chen, and G. Yang, Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro-and nanocubes and spindles upon electrical-
eld-assisted laser ablation in liquid,” The Journal of Physical Chemistr y C, vol. 112, no. 35, pp. 13450{13456, 2008.
[35] X. Lin, P. Liu, J. Yu, and G. Yang, Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid,” The Journal of Physical Chemistry C, vol. 113, no. 40, pp. 17543– 17547, 2009.
[36] Y. Liang, P. Liu, H. Li, and G. Yang, ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties,” Crystal Growth & Design, vol. 12, no. 9, pp. 4487{4493, 2012. 54
[37] Y. Liang, P. Liu, H. Li, and G. Yang, Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance,” CrystEngComm, vol. 14, no. 9, pp. 3291– 3296, 2012.
[38] Y. Shi, H. Li, and L.-J. Li, Recent advances in controlled synthesis of two- dimensional transition metal dichalcogenides via vapour deposition techniques,” Chemical Society Reviews, vol. 44, no. 9, pp. 2744{2756, 2015.
[39] B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957{1962, 2003.
[40] N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Advanced Materials, vol. 13, no. 18, pp. 1389{1393, 2001.
[41] M. Harada and E. Katagiri, Mechanism of silver particle formation during photoreduction using in situ time-resolved saxs analysis,” Langmuir, vol. 26, no. 23, pp. 17896{17905, 2010.
[42] G. Meijer, Who wins the nonvolatile memory race?,” Science, vol. 319, no. 5870, pp. 1625{1626, 2008.
[43] S.-T. Han, Y. Zhou, and V. Roy, Towards the development of exible non-volatile memories,” Advanced Materials, vol. 25, no. 38, pp. 5425{5449, 2013.
[44] F. Hui, E. Grustan-Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, and M. Lanza, Graphene and related materials for resistive random access memories,” Advanced Electronic Materials, vol. 3, no. 8, p. 1600195, 2017. 55
[45] M. Laurenti, S. Porro, C. F. Pirri, C. Ricciardi, and A. Chiolerio, Zinc oxide thin lms for memristive devices: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 42, no. 2, pp. 153{172, 2017.
[46] K. Qian, V. C. Nguyen, T. Chen, and P. S. Lee, Novel concepts in functional resistive switching memories,” Journal of Materials Chemistry C, vol. 4, no. 41, pp. 9637{9645, 2016.
[47] K.-C. Chang, T.-C. Chang, T.-M. Tsai, R. Zhang, Y.-C. Hung, Y.-E. Syu, Y.-F. Chang, M.-C. Chen, T.-J. Chu, H.-L. Chen, et al., Physical and chemical mechanisms in oxide-based resistance random access memory,” Nanoscale Research Letters, vol. 10, no. 1, p. 120, 2015.
[48] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1{59, 2014.
[49] T. Hickmott, Low-frequency negative resistance in thin anodic oxide lms,” Journal of Applied Physics, vol. 33, no. 9, pp. 2669{2682, 1962.
[50] S. d. Q. Liu, N. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change e ect in magnetoresistive lms,” Applied Physics Letters, vol. 76, no. 19, pp. 2749{2751, 2000.
[51] S. K. Hwang, J. M. Lee, S. Kim, J. S. Park, H. I. Park, C. W. Ahn, K. J. Lee, T. Lee, and S. O. Kim, Flexible multilevel resistive memory with controlled charge trap b-and n-doped carbon nanotubes,” Nano Letters, vol. 12, no. 5, pp. 2217{2221, 2012. 56
[52] H. Wang, F. Meng, B. Zhu, W. R. Leow, Y. Liu, and X. Chen, Resistive switching memory devices based on proteins,” Advanced Materials, vol. 27, no. 46, pp. 7670– 7676, 2015.
[53] Z. Fan, H. Fan, L. Yang, P. Li, Z. Lu, G. Tian, Z. Huang, Z. Li, J. Yao, Q. Luo, et al., Resistive switching induced by charge trapping/detrapping: A unied mechanism for colossal electroresistance in certain Nb: SrTiO 3-based heterojunctions,” Journal of Materials Chemistry C, vol. 5, no. 29, pp. 7317{7327, 2017.
[54] I. Hwang, M.-J. Lee, J. Bae, S. Hong, J.-S. Kim, J. Choi, X. L. Deng, S.-E. Ahn, S.-O. Kang, and B. H. Park, a E ects of load resistor on conducting lament characteristics and unipolar resistive switching behaviors in a Pt/NiO/Pt structure,” IEEE Electron Device Letters, vol. 33, no. 6, pp. 881{883, 2012.
[55] X. Zhao, Z. Fan, H. Xu, Z. Wang, J. Xu, J. Ma, and Y. Liu, Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel exible memory,” Journal of Materials Chemistry C, vol. 6, no. 27, pp. 7195{7200, 2018.
[56] R. Waser, Resistive non-volatile memory devices,” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1925{1928, 2009.
[57] J.-J. Huang, C.-W. Kuo, W.-C. Chang, and T.-H. Hou, Transition of stable rectication to resistive-switching in Ti/T iO2/Pt oxide diode,” Applied Physics Letters, vol. 96, no. 26, p. 262901, 2010.
[58] W. Zhu, T. Chen, Y. Liu, and S. Fung, Conduction mechanisms at low-and high- resistance states in aluminum/anodic aluminum oxide/aluminum thin lm structure,” Journal of Applied Physics, vol. 112, no. 6, p. 063706, 2012. 57
[59] J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. Sung Roh, S.-J. Hong, I. Hwan Cho, H.-I. Kwon, C. Hyeong Park, B.-G. Park, et al., Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices,” Applied Physics Letters, vol. 101, no. 10, p. 103506, 2012.
[60] Y. C. Yeo, Q. Lu, W. C. Lee, T.-J. King, C. Hu, X. Wang, X. Guo, and T. Ma, Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Letters, vol. 21, no. 11, pp. 540{542, 2000.
[61] F.-C. Chiu, A review on conduction mechanisms in dielectric lms,” Advances in Materials Science and Engineering, vol. 2014, 2014.
[62] C. Chen, F. Pan, Z. Wang, J. Yang, and F. Zeng, Bipolar resistive switching with self-rectifying e ects in Al/ZnO/Si structure,” Journal of Applied Physics, vol. 111, no. 1, p. 013702, 2012.
[63] S. M. Hong, H.-D. Kim, M. J. Yun, J. H. Park, D. S. Jeon, and T. G. Kim, Improved resistive switching properties by nitrogen doping in tungsten oxide thin lms,” Thin Solid Films, vol. 583, pp. 81{85, 2015.
[64] F.-C. Chiu, W.-C. Shih, and J.-J. Feng, Conduction mechanism of resistive switching lms in MgO memory devices,” Journal of Applied Physics, vol. 111, no. 9, p. 094104, 2012.
[65] Z. Xu, L. Yu, Y. Wu, C. Dong, N. Deng, X. Xu, J. Miao, and Y. Jiang, Low-energy resistive random access memory devices with no need for a compliance current,” Scientic Reports, vol. 5, p. 10409, 2015. 58
[66] S. Kim, H. Y. Jeong, S.-Y. Choi, and Y.-K. Choi, Comprehensive modeling of resistive switching in the Al/TiOx/T iO2/Al heterostructure based on space-chargelimited conduction,” Applied Physics Letters, vol. 97, no. 3, p. 033508, 2010.
[67] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, Resistive switching memory e ect of ZrO2 lms with Zr+ implanted,” Applied Physics Letters, vol. 92, no. 1, p. 012117, 2008.
[68] B. T. Phan, T. Choi, A. Romanenko, and J. Lee, Hopping and trap controlled conduction in Cr-doped SrT iO3 thin lms,” Solid-State Electronics, vol. 75, pp. 43– 47, 2012.
[69] Y. Zhang, N. Deng, H. Wu, Z. Yu, J. Zhang, and H. Qian, Metallic to hopping conduction transition in Ta2O5..X /T aOy resistive switching device,” Applied Physics Letters, vol. 105, no. 6, p. 063508, 2014.
[70] G. M. Crouch, D. Han, S. K. Fullerton-Shirey, D. B. Go, and P. W. Bohn, Addressable direct-write nanoscalelament formation and dissolution by nanoparticlemediated bipolar electrochemistry,” ACS nano, vol. 11, no. 5, pp. 4976{4984, 2017.
[71] A. Guinier, G. Fournet, and K. L. Yudowitch, Small-angle scattering of x-rays,” 1955.
[72] W. Grith, R. Triolo, and A. Compere, Analytical scattering function of a polydisperse Percus-Yevick uid with Schulz-(-) distributed diameters,” Physical Review A, vol. 35, no. 5, p. 2200, 1987. [73] E. Nicollian and A. Goetzberger, The si-sio, interface{electrical properties as determined by the metal-insulator-silicon conductancetechnique,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1055{1033, 1967. 59
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *