|
[1] A. Travers and G. Muskhelishvili, DNA structure and function,” The FEBS Journal , vol. 282, no. 12 pp. 2279{2295, 2015. [2] J. Xiao, P. Liu, Y. Liang, H. Li, and G. Yang, High aspect ratio -MnO2 nanowires and sensor performance for explosive gases,” Journal of Applied Physics, vol. 114, no. 7, p. 073513, 2013. [3] R. Liu, H. Wang, X. Li, G. Ding, and C. Yang, A micro-tensile method for mea2012. [4]J.Xiao,P.Liu,Y.Liang,H.Li,andG.Yang, Poroustungstenoxidenano akesforhighlyalcoholsensitiveperformance,"Nanoscale,vol.4,no.22,pp.7078{7083, 50 [5] P. Liu, Y. Liang, X. Lin, C. Wang, and G. Yang, A general strategy to fabricate simple polyoxometalate nanostructures: electrochemistry-assisted laser ablation in liquid,” ACS Nano, vol. 5, no. 6, pp. 4748{4755, 2011. [6] Y. Xia, K. D. Gilroy, H.-C. Peng, and X. Xia, Seed-mediated growth of colloidal metal nanocrystals,” Angewandte Chemie International Edition, vol. 56, no. 1, pp. 60{95, 2017. [7] J. DeRouchey, R. Netz, and J. Radler, Structural investigations of dna-polycation complexes,” The European Physical Journal E, vol. 16, no. 1, pp. 17{28, 2005. suringmechanicalpropertiesofmemsmaterials,"JournalofMicromechanicsandMicroengineering,vol.18,no.6,p.065002,2008. [8] A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching e ect in thin oxide lms for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139{141, 2000. [9] C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, and H. Wang, Physical mechanism and performance factors of metal oxide based resistive switching memory: a review,” Journal of Materials Science & Technology, vol. 32, no. 1, pp. 1{11, 2016. [10] J. S. Lee, S. Lee, and T. W. Noh, Resistive switching phenomena: A review of statistical physics approaches,” Applied Physics Reviews, vol. 2, no. 3, p. 031303, 2015. [11] S. Rehman, M. F. Khan, S. Aftab, H. Kim, J. Eom, and D.-k. Kim, Thicknessdependent resistive switching in black phosphorus CBRAM,” Journal of Materials Chemistry C, vol. 7, no. 3, pp. 725{732, 2019. [12] Z.-J. Yang, Study of size-dependent bipolar resistive switching responses of modied biopolymer devices,” PhD dissertation, National TSING HUA University, Institute of Photonics Technologies, 2018. [13] S. Chandrasekaran, F. M. Simanjuntak, and T.-Y. Tseng, Controlled resistive switching characteristics of ZrO2-based electrochemical metallization memory devices by modifying the thickness of the metal barrier layer,” Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FE10, 2018. [14] S. H. Park, M. W. Prior, T. H. LaBean, and G. Finkelstein, Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules,” Applied Physics Letters, vol. 89, no. 3, p. 033901, 2006. 51 [15] M. R. Kesama, S. R. Dugasani, S. Yoo,P. Chopade, B. Gnapareddy, and S. H. Park, Morphological and optoelectronic characteristics of double and triple lanthanide ion-doped DNA thin lms,” ACS Applied Materials & Interfaces, vol. 8, no. 22, pp. 14109{14117, 2016. [16] A. J. Steckl, DNA{a new material for photonics?,” Nature Photonics, vol. 1, no. 1, p. 3, 2007. [17] B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon dna thin lms,” Scienti c Reports, vol. 5, p. 12722, 2015. [18] V. Arasu, S. R. Dugasani, M. R. Kesama, H. K. Chung, and S. H. Park, Luminophore conguration and concentration-dependent optoelectronic characteristics of a quantum dot-embedded dna hybrid thin lm,” Scientic reports, vol. 7, no. 1, p. 11567, 2017. [19] C. Yumusak, T. B. Singh, N. Sariciftci, and J. Grote, Bio-organic eld e ect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric,” Applied Physics Letters, vol. 95, no. 26, p. 341, 2009. [20] M. R. Kesama, B. K. Yun, T. Ha, S. R. Dugasani, J. Son, J. H. Kim, J. H. Jung, and S. H. Park, Magneto-optical and thermal characteristics of magnetite nanoparticle-embedded DNA and CTMA-DNA thin lms,” Nanotechnology, vol. 29, no. 46, p. 465703, 2018. [21] J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science, vol. 301, no. 5641, pp. 1884{1886, 2003. 52 [22] R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and H. Yan, DNA self-assembly for nanomedicine,” Advanced Drug Delivery Reviews, vol. 62, no. 6, pp. 617{625, 2010. [23] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, The golden age: gold nanoparticles for biomedicine,” Chemical Society Reviews, vol. 41, no. 7, pp. 2740{2779, 2012. [24] V. Amendola and M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Physical Chemistry Chemical Physics, vol. 11, no. 20, pp. 3805{3821, 2009. [25] M.-C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293{346, 2004. [26] C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1721{1730, 2008. [27] L. A. Austin, B. Kang, and M. A. El-Sayed, Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review,” Nano Today, vol. 10, no. 5, pp. 542{558, 2015. [28] P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307– 1315, 2008. [29] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, no. 5, pp. 2739{2779, 2012. 53 [30] E. Di Fabrizio, S. Schlucker, J. Wenger, R. Regmi, H. Rigneault, G. Calaore, M. West, S. Cabrini, M. Fleischer, N. F. Van Hulst, et al., Roadmap on biosensing and photonics with advanced nano-optical methods,” Journal of Optics, vol. 18, no. 6, p. 063003, 2016. [31] K. Niu, J. Yang, S. Kulinich, J. Sun, and X. Du, Hollow nanoparticles of metal oxides and suldes: Fast preparation via laser ablation in liquid,” Langmuir, vol. 26, no. 22, pp. 16652{16657, 2010. [32] T. Tsuji, Y. Okazaki, Y. Tsuboi, and M. Tsuji, Nanosecond time-resolved observations of laser ablation of silver in water,” Japanese Journal of Applied Physics, vol. 46, no. 4R, p. 1533, 2007. [33] S. Petersen and S. Barcikowski, In situ bioconjugation: Single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation,” Advanced Functional Materials, vol. 19, no. 8, pp. 1167{1172, 2009. [34] P. Liu, C. Wang, X. Chen, and G. Yang, Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro-and nanocubes and spindles upon electrical- eld-assisted laser ablation in liquid,” The Journal of Physical Chemistr y C, vol. 112, no. 35, pp. 13450{13456, 2008. [35] X. Lin, P. Liu, J. Yu, and G. Yang, Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid,” The Journal of Physical Chemistry C, vol. 113, no. 40, pp. 17543– 17547, 2009. [36] Y. Liang, P. Liu, H. Li, and G. Yang, ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties,” Crystal Growth & Design, vol. 12, no. 9, pp. 4487{4493, 2012. 54 [37] Y. Liang, P. Liu, H. Li, and G. Yang, Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance,” CrystEngComm, vol. 14, no. 9, pp. 3291– 3296, 2012. [38] Y. Shi, H. Li, and L.-J. Li, Recent advances in controlled synthesis of two- dimensional transition metal dichalcogenides via vapour deposition techniques,” Chemical Society Reviews, vol. 44, no. 9, pp. 2744{2756, 2015. [39] B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957{1962, 2003. [40] N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Advanced Materials, vol. 13, no. 18, pp. 1389{1393, 2001. [41] M. Harada and E. Katagiri, Mechanism of silver particle formation during photoreduction using in situ time-resolved saxs analysis,” Langmuir, vol. 26, no. 23, pp. 17896{17905, 2010. [42] G. Meijer, Who wins the nonvolatile memory race?,” Science, vol. 319, no. 5870, pp. 1625{1626, 2008. [43] S.-T. Han, Y. Zhou, and V. Roy, Towards the development of exible non-volatile memories,” Advanced Materials, vol. 25, no. 38, pp. 5425{5449, 2013. [44] F. Hui, E. Grustan-Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, and M. Lanza, Graphene and related materials for resistive random access memories,” Advanced Electronic Materials, vol. 3, no. 8, p. 1600195, 2017. 55 [45] M. Laurenti, S. Porro, C. F. Pirri, C. Ricciardi, and A. Chiolerio, Zinc oxide thin lms for memristive devices: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 42, no. 2, pp. 153{172, 2017. [46] K. Qian, V. C. Nguyen, T. Chen, and P. S. Lee, Novel concepts in functional resistive switching memories,” Journal of Materials Chemistry C, vol. 4, no. 41, pp. 9637{9645, 2016. [47] K.-C. Chang, T.-C. Chang, T.-M. Tsai, R. Zhang, Y.-C. Hung, Y.-E. Syu, Y.-F. Chang, M.-C. Chen, T.-J. Chu, H.-L. Chen, et al., Physical and chemical mechanisms in oxide-based resistance random access memory,” Nanoscale Research Letters, vol. 10, no. 1, p. 120, 2015. [48] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1{59, 2014. [49] T. Hickmott, Low-frequency negative resistance in thin anodic oxide lms,” Journal of Applied Physics, vol. 33, no. 9, pp. 2669{2682, 1962. [50] S. d. Q. Liu, N. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change e ect in magnetoresistive lms,” Applied Physics Letters, vol. 76, no. 19, pp. 2749{2751, 2000. [51] S. K. Hwang, J. M. Lee, S. Kim, J. S. Park, H. I. Park, C. W. Ahn, K. J. Lee, T. Lee, and S. O. Kim, Flexible multilevel resistive memory with controlled charge trap b-and n-doped carbon nanotubes,” Nano Letters, vol. 12, no. 5, pp. 2217{2221, 2012. 56 [52] H. Wang, F. Meng, B. Zhu, W. R. Leow, Y. Liu, and X. Chen, Resistive switching memory devices based on proteins,” Advanced Materials, vol. 27, no. 46, pp. 7670– 7676, 2015. [53] Z. Fan, H. Fan, L. Yang, P. Li, Z. Lu, G. Tian, Z. Huang, Z. Li, J. Yao, Q. Luo, et al., Resistive switching induced by charge trapping/detrapping: A unied mechanism for colossal electroresistance in certain Nb: SrTiO 3-based heterojunctions,” Journal of Materials Chemistry C, vol. 5, no. 29, pp. 7317{7327, 2017. [54] I. Hwang, M.-J. Lee, J. Bae, S. Hong, J.-S. Kim, J. Choi, X. L. Deng, S.-E. Ahn, S.-O. Kang, and B. H. Park, a E ects of load resistor on conducting lament characteristics and unipolar resistive switching behaviors in a Pt/NiO/Pt structure,” IEEE Electron Device Letters, vol. 33, no. 6, pp. 881{883, 2012. [55] X. Zhao, Z. Fan, H. Xu, Z. Wang, J. Xu, J. Ma, and Y. Liu, Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel exible memory,” Journal of Materials Chemistry C, vol. 6, no. 27, pp. 7195{7200, 2018. [56] R. Waser, Resistive non-volatile memory devices,” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1925{1928, 2009. [57] J.-J. Huang, C.-W. Kuo, W.-C. Chang, and T.-H. Hou, Transition of stable rectication to resistive-switching in Ti/T iO2/Pt oxide diode,” Applied Physics Letters, vol. 96, no. 26, p. 262901, 2010. [58] W. Zhu, T. Chen, Y. Liu, and S. Fung, Conduction mechanisms at low-and high- resistance states in aluminum/anodic aluminum oxide/aluminum thin lm structure,” Journal of Applied Physics, vol. 112, no. 6, p. 063706, 2012. 57 [59] J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. Sung Roh, S.-J. Hong, I. Hwan Cho, H.-I. Kwon, C. Hyeong Park, B.-G. Park, et al., Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices,” Applied Physics Letters, vol. 101, no. 10, p. 103506, 2012. [60] Y. C. Yeo, Q. Lu, W. C. Lee, T.-J. King, C. Hu, X. Wang, X. Guo, and T. Ma, Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Letters, vol. 21, no. 11, pp. 540{542, 2000. [61] F.-C. Chiu, A review on conduction mechanisms in dielectric lms,” Advances in Materials Science and Engineering, vol. 2014, 2014. [62] C. Chen, F. Pan, Z. Wang, J. Yang, and F. Zeng, Bipolar resistive switching with self-rectifying e ects in Al/ZnO/Si structure,” Journal of Applied Physics, vol. 111, no. 1, p. 013702, 2012. [63] S. M. Hong, H.-D. Kim, M. J. Yun, J. H. Park, D. S. Jeon, and T. G. Kim, Improved resistive switching properties by nitrogen doping in tungsten oxide thin lms,” Thin Solid Films, vol. 583, pp. 81{85, 2015. [64] F.-C. Chiu, W.-C. Shih, and J.-J. Feng, Conduction mechanism of resistive switching lms in MgO memory devices,” Journal of Applied Physics, vol. 111, no. 9, p. 094104, 2012. [65] Z. Xu, L. Yu, Y. Wu, C. Dong, N. Deng, X. Xu, J. Miao, and Y. Jiang, Low-energy resistive random access memory devices with no need for a compliance current,” Scientic Reports, vol. 5, p. 10409, 2015. 58 [66] S. Kim, H. Y. Jeong, S.-Y. Choi, and Y.-K. Choi, Comprehensive modeling of resistive switching in the Al/TiOx/T iO2/Al heterostructure based on space-chargelimited conduction,” Applied Physics Letters, vol. 97, no. 3, p. 033508, 2010. [67] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, Resistive switching memory e ect of ZrO2 lms with Zr+ implanted,” Applied Physics Letters, vol. 92, no. 1, p. 012117, 2008. [68] B. T. Phan, T. Choi, A. Romanenko, and J. Lee, Hopping and trap controlled conduction in Cr-doped SrT iO3 thin lms,” Solid-State Electronics, vol. 75, pp. 43– 47, 2012. [69] Y. Zhang, N. Deng, H. Wu, Z. Yu, J. Zhang, and H. Qian, Metallic to hopping conduction transition in Ta2O5..X /T aOy resistive switching device,” Applied Physics Letters, vol. 105, no. 6, p. 063508, 2014. [70] G. M. Crouch, D. Han, S. K. Fullerton-Shirey, D. B. Go, and P. W. Bohn, Addressable direct-write nanoscalelament formation and dissolution by nanoparticlemediated bipolar electrochemistry,” ACS nano, vol. 11, no. 5, pp. 4976{4984, 2017. [71] A. Guinier, G. Fournet, and K. L. Yudowitch, Small-angle scattering of x-rays,” 1955. [72] W. Grith, R. Triolo, and A. Compere, Analytical scattering function of a polydisperse Percus-Yevick uid with Schulz-(-) distributed diameters,” Physical Review A, vol. 35, no. 5, p. 2200, 1987. [73] E. Nicollian and A. Goetzberger, The si-sio, interface{electrical properties as determined by the metal-insulator-silicon conductancetechnique,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1055{1033, 1967. 59
|