帳號:guest(3.149.229.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宇揚
作者(外文):Lin, Yu-Yang
論文名稱(中文):基於偏振態無感的偏振態多工傳輸及多對多天線編碼之光纖無線整合系統應用於5G室內傳輸
論文名稱(外文):Fiber Wireless Integrated System based polarization insensitive PDM transmission and MIMO precoding for 5G indoor transmission
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):林炆標
葉建宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066529
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:47
中文關鍵詞:偏振態無感偏振態多工多對多天線傳輸
外文關鍵詞:radio over fiberfiber wireless5GMIMOSTBCPDM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:293
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
由於人類使用電子產品越來越普及,需要較大的資料傳輸量來應付越來越多的用戶。然而隨著製程和天線技術的演進,能將元件越做越小,對於天線來說,也就意味著能運作在更高的頻段,也就是說能在一個傳送端或用戶端上乘載多個的天線(Muti-Input Muti-Output, MIMO)來收發訊號。在目前5G的規劃,是以低頻段為主,高頻段為輔,其訊號格式仍然是利用正交分頻多工 (Orthogonal Frequency Diversity Mutiplexing , OFDM),但是隨著天線數量的增加,就需要利用一些預編碼(Pre-Coding)技術來將混雜在一起的訊號分離。本篇論文實驗架構將仿效現行環境,傳送端為訊號產生器,其產生的訊號由電腦提供,傳送端到基地台是利用光纖來傳遞訊號,基地台再到用戶端則是利用天線來傳遞訊號,用戶端則是利用示波器將訊號存到電腦裡來做後續的數位訊號處理。利用空時編碼技術(Space Time Block Coding) 將傳送端的訊號先做編碼。在傳送端到基地台過程中,再利用偏振多工技術(Polarization Diversity Mutiplexing , PDM)來增加傳輸的資料量,在基地台到接收端,我們將訊號升頻到28GHz的毫米波頻段藉由天線進行傳輸,最後接收端再將訊號復原。
最後的實驗結果將比較只用一個天線和用多天線來傳輸的表現差別和優缺點,和在多天線的情況下,無線距離對於錯誤率的影響、光功率對於錯誤率,最後將比較兩種STBC排列的優缺點。
Because widespread of using electronic product, we need more data transmission rate to handle more user. Thanks to the evolution of produce process and antenna technology, size of elements are decreased. It means we can support many antennas on one user side and work at higher frequency. In present plans of 5G, we mainly use low frequency band to transmit signal and use high frequency band to support transmission. The format of signal is still Orthogonal Frequency Diversity Mutiplexing (OFDM). By the quantity of antenna increasing, we use pre-coding technology to separate signal from different antenna. The structure of this paper will imitate present communication system. At first, we use space time block code to pre-process signal, and then we use polarization diversity multiplexing for increasing data rate. However, we transmit signal through antennas at 28GHz (millimeter wave). Finally, we recover signal with digital signal processing at receiver. Final result will show our performance at different wireless distance and the sensitivity of optical power and comparison of SISO and MIMO. At last, we propose a simple structure to compare our original structure.
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 論文架構 6
第二章 原理介紹 7
2-1 OFDM訊號原理 7
2-2 多對多天線傳輸MIMO 10
2-3 STBC編碼 11
2-3-1 STBC encoder 11
2-3-2 STBC decoder 13
2-3 光電轉換器―馬赫德調變器MACH-ZEHNDER MODULATOR(MZM) 16
2-4 光學梳狀濾波器OPTICAL INTERLEAVER 18
2-5 光接收器PHOTODETECTOR 19
2-6 混頻器MIXER 21
第3章 實驗架構介紹 22
3-1 DSP架構 22
3-2 偏振態多工(POLARIZATION DIVERSITY MULTIPLEXING ,PDM) 25
3-2-1 偏振態介紹 25
3-2-2 利用IL及特定訊號光波長實現偏振多工及偏振無感接收 26
3-3實驗架構 28
3-4 實驗參數設置 31
第4章 實驗結果 32
4-1 PDM光譜圖 32
4-2 單偏振和PDM的光功率VS BER比較圖 34
4-3 OPTICAL功率對BER 36
4-4 1X1 VS 2X1 VS 2X2對距離拉開的容忍表現 39
4-5 不同訊號格式星座圖 41
4-6 不同STBC排法表現比較 42
4-6-1 訊號排列格式介紹 42
4-6-2 結果圖 43
第5章 結論 44
參考文獻 45

[1] A. Sayeed and J. Brady, "Beamspace MIMO Channel Modeling and Measurement: Methodology and Results at 28GHz," in 2016 IEEE Globecom Workshops (GC Wkshps), 4-8 Dec. 2016 2016, pp. 1-6, doi: 10.1109/GLOCOMW.2016.7848846.
[2] X. Cheng, Z. Fu, N. Lou, and Q. Li, "Power Iteration Based Training for Millimeter Wave MIMO Beamforming Systems," in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 15-18 May 2016 2016, pp. 1-5, doi: 10.1109/VTCSpring.2016.7504427.
[3] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, 2014, doi: 10.1109/TWC.2014.011714.130846.
[4] Z. Qingling and J. Li, "Rain Attenuation in Millimeter Wave Ranges," in 2006 7th International Symposium on Antennas, Propagation & EM Theory, 26-29 Oct. 2006 2006, pp. 1-4, doi: 10.1109/ISAPE.2006.353538.
[5] S. Yang and L. Hanzo, "Fifty Years of MIMO Detection: The Road to Large-Scale MIMOs," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 1941-1988, 2015, doi: 10.1109/COMST.2015.2475242.
[6] J. Armstrong, "OFDM for Optical Communications," Journal of Lightwave Technology, vol. 27, no. 3, pp. 189-204, 2009, doi: 10.1109/JLT.2008.2010061.
[7] 蔣政儒. "OFDM指標式通道估測." https://ir.nctu.edu.tw/bitstream/11536/47090/5/362005.pdf (accessed.
[8] A. A. Kalachikov and N. S. Shelkunov, "Performance Evaluation of the Detection Algorithms for MIMO Spatial Multiplexing Based on Analytical Wireless MIMO Channel Models," in 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2-6 Oct. 2018 2018, pp. 180-183, doi: 10.1109/APEIE.2018.8545229.
[9] R. Kumar and R. Saxena, "Performance analysis of MIMO-STBC systems with higher coding rate using adaptive semiblind channel estimation scheme," (in eng), ScientificWorldJournal, vol. 2014, pp. 304901-304901, 2014, doi: 10.1155/2014/304901.
[10] S. Nandi, A. Nandi, and N. N. Pathak, "Performance analysis of Alamouti STBC MIMO OFDM for different transceiver system," in 2017 International Conference on Intelligent Sustainable Systems (ICISS), 7-8 Dec. 2017 2017, pp. 883-887, doi: 10.1109/ISS1.2017.8389305.
[11] E. M. H. Mohamed, "Performance Analysis of Transmit Diversity STBC-OFDM and Differential STBC-OFDM Over Fading Channels," 2013.
[12] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, 1999, doi: 10.1109/18.771146.
[13] H. Ravula and U. S. Acharya, "Performance of Alamouti space time codes in an optical uplink channel," in 2015 IEEE International Advance Computing Conference (IACC), 12-13 June 2015 2015, pp. 541-546, doi: 10.1109/IADCC.2015.7154766.
[14] Optoplex. "Optical interleaver " https://www.optoplex.com/download/Optoplex%20Optical%20Interleaver%20Brochure%20Rev1.1.pdf (accessed.
[15] L. Tao et al., "Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission," IEEE Photonics Technology Letters, vol. 24, no. 24, pp. 2276-2279, 2012, doi: 10.1109/LPT.2012.2227309.
[16] K. Takeshima, H. Takahashi, T. Tsuritani, and I. Morita, "Polarization demultiplexing using linearly-estimated channel matrix in PDM systems with MIMO processing," in OFC/NFOEC, 4-8 March 2012 2012, pp. 1-3.
[17] H. Hou-Tzu et al., "Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking," in 2015 Optical Fiber Communications Conference and Exhibition (OFC), 22-26 March 2015 2015, pp. 1-3.
[18] F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, "Fiber-Wireless Transmission System of PDM-MIMO-OFDM at 100 GHz Frequency," Journal of Lightwave Technology, vol. 31, no. 14, pp. 2394-2399, 2013, doi: 10.1109/JLT.2013.2266353.
[19] M. S. Erkılınç et al., "Polarization-Insensitive Single-Balanced Photodiode Coherent Receiver for Long-Reach WDM-PONs," Journal of Lightwave Technology, vol. 34, no. 8, pp. 2034-2041, 2016, doi: 10.1109/JLT.2015.2507869.
[20] H. Jafarkhani, "A quasi-orthogonal space-time block code," IEEE Transactions on Communications, vol. 49, no. 1, pp. 1-4, 2001, doi: 10.1109/26.898239.
[21] W. Su, X. Xia, and K. J. R. Liu, "Systematic design of complex orthogonal space-time block codes with high rates," in 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733), 21-25 March 2004 2004, vol. 3, pp. 1442-1445 Vol.3, doi: 10.1109/WCNC.2004.1311655.
[22] K. Morioka, S. Yamazaki, and D. Asano, "Study on spectral efficiency for STBC-CPM with two and four transmit antennas," in 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 18-20 Dec. 2017 2017, pp. 030-034, doi: 10.1109/ISSPIT.2017.8388314.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *