帳號:guest(18.219.70.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏豪
作者(外文):Haung, Po-Hao
論文名稱(中文):以離子束濺鍍法鍍製奈米多層膜其光學特性之退火效應與離子束濺鍍法鍍製氮化矽薄膜之材料特性分析
論文名稱(外文):Anneal effect on optical properties of nano-layer coating deposited by ion beam sputtering and material properties of silicon nitride coatings deposited by ion beam sputtering
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):王立康
陳至信
口試委員(外文):Wang, Li-Karn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066528
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:離子束濺鍍法氮化矽薄膜奈米多層膜
外文關鍵詞:ion-beam sputteringsilicon nitridenano-layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:108
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了偵測到更微小的重力波訊號、觀察到更多的天體變化,提升干涉儀的靈敏度是必須的。提高干涉儀靈敏度的關鍵之一在於能否降低光學薄膜的熱擾動。根據Fluctuation-Dissipation Theorem,可知熱擾動正比於光學薄膜的溫度與機械損耗。此外,薄膜的光學吸收也是重點,過高的光學吸收會導致訊號的強度減弱。故本實驗室致力於開發具有低的低溫機械損耗與低光學吸收的光學薄膜。

我們使用離子束濺鍍法研究二氧化矽、二氧化鈦與奈米多層膜結構光學特性。使用此方式鍍製出的二氧化矽與二氧化鈦其消光係數皆在低階10-5數量級,而將兩種材料堆疊為奈米多層膜結構後,光學吸收在此結構下沒有明顯的影響。接著在進行600oC退火後,二氧化矽的消光係數有著顯著的改善,二氧化鈦的消光係數亦有改善但並不明顯。

在先前研究PECVD鍍製的氮化矽薄膜中發現,薄膜內的N-H鍵、矽懸鍵與光學吸收呈正相關,Si-H鍵則是會有Two-level system而影響到室溫的機械損耗。故計畫使用離子束濺鍍法鍍製氮化矽薄膜。於研究中發現,使用濺鍍法鍍製的氮化矽薄膜內,含有預期外的Si-H鍵及較多的矽懸鍵,且薄膜的消光係數也達到10-2數量級,愈使用在高反射鏡上是還有待改善的。
To detect gravity signals and observe more celestial changes. It is necessary to increase the sensitivity of the interferometer. One of the keys to improve the sensitivity of the interferometer is whether it can reduce the thermal noise of the optical film. According to Fluctuation-Dissipation Theorem, we can know that thermal perturbation is proportional to the temperature and mechanical loss of the optical film. Besides, the optical absorption of the film is also essential. If the optical absorption is too high, the intensity of the signal is lowered. Therefore, we are committed to the development of optical films with low mechanical loss at low temperatures and low optical absorption.

We study optical properties of silica, titania, and nano-layer structure deposited by ion beam sputtering. The extinction coefficients of silica and titania deposited by ion beam sputtering are 10-5 order, and after the two materials are combined into a nano-multilayer structure, optical absorption has no obvious influence under this structure. Then, after annealing at 600oC, the extinction coefficient of silica is improved obviously, and titania is also improved but not obvious.

In the previous study of silicon nitride film deposited by PECVD, we know that the N-H bond and silicon dangling bond in the film are proportional to optical absorption, and the Si-H bond is a two-level system that affects the mechanical loss at room temperature. Therefore, we use an ion beam sputtering method for coating silicon nitride film. In the research, we found the silicon nitride coated by sputtering method contains the expected Si-H bond and more silicon dangling bonds, and the extinction coefficient is 10-2 order. Consequently, using the film for high reflection mirror of interferometer still be improved.
Abstract I
摘要 II
致謝 III
圖目錄 VI
表目錄 VIII
第一章、 導論…………………………………………………………………………1
1-1 前言…………………………………………………………………………1
1-2 研究動機……………………………………………………………………3
第二章、 奈米多層膜製程……………………………………………………………6
2-1 離子束濺鍍系統……………………………………………………………6
2-2 耗材(燈絲)更換…………….………………………………………………8
2-2.1 燈絲的選用與使用壽命…………………………………………8
2-2.2 燈絲的折繞方式…………………………………………………8
2-2.3 燈絲的安裝………………………………………………………9
2-3 環境的清潔………………………………………………………………..10
2-4 沉積速率校正……………………………………………………………..11
2-5 鍍製時之操作流程………………………………………………………..12
2-5.1 氣體通入順序及氣體環境記錄………………………………..12
2-5.2 熱機過程………………………………………………………..13
2-5.3 變換鍍製材料之過程…………………………………………..15
2-6 奈米多層膜鍍製結果……………………………………………………..15
第三章、 奈米多層膜光學吸收……………………………………………………..17
3-1 光學吸收量測機台介紹…………………………………………………..17
3-2 光學吸收分析方式………………………………………………………..18
3-3 TiO2、SiO2光學吸收分析………………………………………………..19
3-4 奈米多層膜光學吸收探討………………………………………………..19
3-5 薄膜退火之光學吸收分析………………………………………………..22
3-6 結論………………………………………………………………………..25
第四章、 氮化矽薄膜鍍製…………………………………………………………..26
4-1 文獻探討…………………………………………………………………..26
4-2 離子束濺鍍系統的改動…………………………………………………..31
4-3 氮化矽薄膜製程與測試…………………………………………………..33
4-3.1 氮化矽薄膜製程………………………………………………..33
4-3.2 熱機時間測試…………………………………………………..33
4-3.3 燈絲使用時間…………………………………………………..35
4-4 氮化矽薄膜特性分析……………………………………………………..36
4-4.1 折射係數與沉積速率………………………………………..…36
4-4.2 鍵結濃度………………………………………………………..37
4-4.3 矽懸鍵濃度……………………………………………………..40
4-4.4 消光係數………………………………………………………..41
4-4.5 成份分析………………………………………………………..42
第五章、 總結與未來展望…………………………………………………………..44
5-1 總結………………………………………………………………………..44
5-2 未來展望…………………………………………………………………..45
附錄A、Comsol 模擬 – 有限元素法 45
附錄B、奈米多層膜退火前後之楊氏模數分析 60
參考文獻 65

[1] A. Einstein, “Die gruTSRIage der allgemeinen relativitätstheorie”, Annalen der Physik 49, 769-822 (1916).
[2] R. A. Hulse, and J. H. Taylor, “Discovery of pulsar in a binary system”, Astrophys. J. 195, L51-L53 (1975).
[3] B. P. Abbott et al., “Observation of gravitational waves from a 22-solar-mass binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016)
[4] LIGO Scientific Collaboration, “Instrument Science white paper of LIGO 2018”, http://dcc.ligo.org/LIGO-T1800133/public
[5] H. B. Callen et al., “Irreversibility and generalized noise”, Phys. Rev., Vol.83, 34-40 (1951)
[6] R. F. Greene et al., “On the formalism of thermodynamic fluctuation theory”, Phys. Rev., Vol.83, 1231-1235(1951)
[7] H. B. Callen et al., “On a theorem of irreversible thermodynamics”, Phys. Rev., Vol.86, 702-710(1952)
[8] 王順錦, “應用於雷射干涉重力波偵測器之以離子束濺鍍法製作奈米膜層結構高反射鏡及其結晶條件之探討”, 國立清華大學碩士論文 (2013)
[9] 宋欣忠, “奈米多層薄膜在熱退火後的晶粒尺寸研究”, 國立清華大學碩士論文 (2013)
[10] 張啟禮, “利用離子束濺鍍法鍍製奈米多層膜其低溫機械損耗抑制效應與退火效應之研究”, 國立清華大學碩士論文 (2018)
[11] S. Chao et al., “Inhibition of Cryogenic Mechanical Loss in Thin Films by Thickness Reduction”, LIGO Report No. G1800300-v2 (2018)
[12] S. Chao et al., “Annealing Effect on the PECVD Silicon Nitride Films”, LIGO Report No. G1900305(2019)
[13] 張臨安, “以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響”, 國立清華大學碩士論文 (2018)
[14] T. Liu, Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD, Master thesis, National Tsing Hua University (2018)
[15] S. Chao et al., “Annealing effect on the nano-meter scale titaniasilica multi-layers for mirror coatings of the laser interferometer gravitational waves detector”, LIGO Report No. G1900356-v3(2019)
[16] 黃榛莉, “電漿輔助化學氣相沉積之氮化矽薄膜其熱退火後光學特性與無氨氣電漿輔助化學氣相沉積法之氮化矽薄膜其光學及機械特性之探討” , 國立清華大學碩士論文 (2019)
[17] 潘皇緯, “利用電漿輔助化學氣相沉積法鍍製低熱雜訊之氮化矽與氧化矽薄膜應用於雷射干涉重力波偵測器反射鏡之研究” , 國立清華大學博士論文 (2018)
[18] 黃文正, “以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備”, 國立清華大學碩士論文 (2012)
[19] 王文祥, “具低損耗之光學混合膜及雷射反射鏡的研究”, 國立清華大學博士論文 (1999)
[20] 郭令智, “利用離子束濺鍍法鍍製二氧化矽與二氧化鈦之奈米多層薄膜應用於雷射干涉重力波偵測器反射鏡之研究”, 國立清華大學碩士論文 (2019)
[21] A. L. Alexandrovski et al., Photothermal common-path interferometry (PCI): new developments, Proc.SPIE 7193, Solid State Lasers XVIII: Technology and devices 71930D doi:10.1117/12.814813 (2009)
[22] 康乃中, “光熱共光路干涉儀系統之設置與電漿輔助化學氣相沉積法沉積之氮化矽薄膜光學吸收之研究”, 國立清華大學碩士論文 (2017)
[23] https://www.corning.com/
[24] R. Adhikari et al., LIGO III Blue ConceptLIGO, LIGO Report No. LIGO-G1200573, 2012, http://dcc.ligo.org/LIGO-G1200573-v1/public
[25] A.J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures”, Opt. Appl. 36, 39-50 (2006)
[26] M. Vila et al., “Mechanical properties of sputtered silicon nitride thin films”, Journal of Applied Physics 94, 7868 (2003)
[27] M. Vila et al., “Electrical behavior of silicon nitride sputtered thin films”, Thin Solid Films 459, 195–199 (2004)
[28] G. Xu et al., “Optical investigation of silicon nitride thin films deposited by r. f. magnetron sputtering”, Thin Solid Films 425, 196–202 (2003)
[29] S. Tan and T. E. Schlesinger et al., “The role of Si3N4 layers in determining the texture of sputter deposited LiNbO3 thin films”, Appl. Phys. Lett. 68, 2651 (1996)
[30] L. Huang et al., “Structure and composition studies for silicon nitride thin films deposited by single ion bean sputter deposition”, Thin Solid Films 299, 104–109 (1997)
[31] E. A. Taft, “Characterization of Silicon Nitride Films”, J. Electrochem. Soc., 118, 1341-1346 (1971)
[32] S. Hasegawa et al. Connection between Si-N and Si-H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B, 59, 365−375 (1989)
[33] M. H. Srodsky et al., “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, 16, 8 (1977)
[34] H. Shanks et al., “Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon”, Phys. Status Solidi, 100, 43 (1980)

[35] C. J. Fang et al., “The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques”, Journal of Non-Crystalline Solids, 35-36, 255-260 (1980)
[36] A. Morimoto et al., “Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods”, Jpn. J. Appl. Phys., 24, 1394, (1985)
[37] V. A. Burdovitsin, “Silicon nitride and oxynitride films prepared by ion beam reactive sputtering”, Thin Solid Films, 105 197-202 (1983)
[38] R. P. Netterfield et al., “Synthesis of silicon nitride and silicon oxide films by ion-assisted deposition”, Applied optics, Vol. 25, No. 21 (1986)
[39] R. Birney et al., “Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy”, Phys. Rev. Lett. 121, 191101 (2018)
[40] Matthew A et al., “What is the Young’s Modulus of Silicon?”, Journal of microelectromechanical systems, Vol. 19, No. 2, April 2010
[41] 張瑞慶, “奈米壓痕技術與應用”, 聖約翰科技大學機械系, 2010.
[42] S. Chao et al., “Mechanical loss of silicon nitride films grown by plasma-enhanced chemical vapor deposition(PECVD) method”, LIGO Report No. G1300171-v1(2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *