|
[1] Y. Zhao, D. Zhang, L. Qin, Q. Tang, R. H. Wu, J. Liu, et al., "InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination," Optics express, vol. 19, pp. 8546-8556, 2011. [2] C. Skrimshire, J. Farr, D. Sloan, M. Robertson, P. Putland, J. Stokoe, et al., "Reliability of mesa and planar InGaAs PIN photodiodes," IEE Proceedings J (Optoelectronics), vol. 137, pp. 74-78, 1990. [3] M. Ravi, A. DasGupta, and N. DasGupta, "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment," Journal of crystal growth, vol. 268, pp. 359-363, 2004. [4] B. Lee and I. Yun, "Effect of different etching processes on edge breakdown suppression for planar InP/InGaAs avalanche photodiodes," Microelectronics journal, vol. 33, pp. 645-649, 2002. [5] S. Ganichev, A. Dmitriev, S. Emel'yanov, Y. Terent'ev, I. Yaroshetskii, and I. Yassievich, "Impact ionization in semiconductors under the influence of the electric field of an optical wave," Soviet physics JETP, vol. 63, pp. 256-263, 1986. [6] L. Tarof, D. Knight, K. Fox, C. Miner, N. Puetz, and H. Kim, "Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery," Applied physics letters, vol. 57, pp. 670-672, 1990. [7] Y. Liu, S. R. Forrest, J. Hladky, M. Lange, G. H. Olsen, and D. Ackley, "A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction," Journal of Lightwave Technology, vol. 10, pp. 182-193, 1992. [8] J. Jung, Y. H. Kwon, K. S. Hyun, and I. Yun, "Reliability of planar InP-InGaAs avalanche photodiodes with recess etching," IEEE Photonics Technology Letters, vol. 14, pp. 1160-1162, 2002. [9] L. Lin, W. Wang, N. Li, and W. Lu, "Theoretical study of separate absorption, grading, charge, and multiplication InGaAs/InP single photon avalanche diode," in 2008 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2008, pp. 83-84. [10] S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghosh, "Comparative studies of p-type InP layers formed by Zn 3 As 2 and Zn 3 P 2 diffusion," Journal of electronic materials, vol. 32, pp. 932-934, 2003. [11] O. Pitts, W. Benyon, D. Goodchild, and A. SpringThorpe, "Multiwafer zinc diffusion in an OMVPE reactor," Journal of Crystal Growth, vol. 352, pp. 249-252, 2012. [12] A. Tosi, F. Acerbi, A. Dalla Mora, M. Itzler, and X. Jiang, "Active area uniformity of InGaAs/InP single-photon avalanche diodes," IEEE photonics journal, vol. 3, pp. 31-41, 2011. [13] V. Swaminathan and A. Macrander, Materials aspects of GaAs and InP based structures: Prentice-Hall, Inc., 1991. [14] R. W. Hoogeveen and A. P. Goede, "Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere," Infrared Physics & Technology, vol. 42, pp. 1-16, 2001. [15] D. A. Neamen, Semiconductor physics and devices: basic principles: New York, NY: McGraw-Hill, 2012. [16] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006. [17] M. Fukuda, "Optical Semiconductor Devices''John Wiley & Sons," Inc, Canda, 1999. [18] W. Grant, "Electron and hole ionization rates in epitaxial silicon at high electric fields," Solid-State Electronics, vol. 16, pp. 1189-1203, 1973. [19] K.-S. Hyun, Y.-H. Kwon, and I. Yun, "Characteristics of a planar InP/InGaAs avalanche photodiode with a thin multiplication layer," Journal-Korean Physical Society, vol. 44, pp. L779-L784, 2004.
|