帳號:guest(3.133.116.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉安茹
作者(外文):Liu, An-Ju
論文名稱(中文):低崩壓高增益雪崩二極體陣列之研製
論文名稱(外文):The Development of Low Breakdown Voltage and High Gain Avalanche Photodiode Array
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-chyi
口試委員(中文):劉柏村
賴利溫
羅文雄
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066522
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:69
中文關鍵詞:雪崩型光偵測器陣列低崩壓高增益平面型SAGCM
外文關鍵詞:SAGCMPlanar-typeGuard ringAPD array
相關次數:
  • 推薦推薦:0
  • 點閱點閱:393
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要目的為研製一個可在1100nm~1700nm波段的光纖通訊與雷達偵測中使用的光崩潰二極體陣列。在磷化銦基板上(InP substrate),用有機金屬化學氣相沉積系統(MOCVD)製作出砷化銦鎵/磷化銦磊晶層。單顆光崩潰二極體的直徑大小為200微米。 利用平面式結構配上直徑220微米的第一層外部護環以及兩圈寬度為5微米的護環結構能使光崩潰二極體擁有較低的暗電流以及穩定性。
在製程中,我們使用氮化矽作為擴散阻擋層以及鈍化層,分別用來定義擴散區以及降低元件的漏電流。p 型區域是透過快速熱擴散的技術,將未參雜的磷化銦覆蓋層成為p型磷化銦覆蓋層,而形成光崩潰二極體。另外,鋅原子是目前用於砷化銦鎵光檢測器中最常見的p型參雜源。
使用不同擴散深度和蝕刻深度分別被製作成元件並且分析討論,不同的擴散條件定義了不同增益層的厚度,而不同的增益層厚度對元件的影響也在論文中被探討。最後成功製作出的4x4光崩潰二極體陣列,在-5V的偏壓下有著1.34nA±2.42nA的低暗電流,而在95%崩潰電壓(-30.1V±1.51)下為959nA±2.07uA的暗電流,並且擁有增益值為 17.12±10.1。
In this thesis, we are going to fabricate an avalanche photodiode for the lidar application, the operating wavelength is between 1100nm~1700nm which determined by the InP/InGaAs materials. On top of the InP substrate growns a thin InP/InGaAs epitaxy layer by MOCVD. The diameter of the avalanche photodiode device is 200m, the device is designed with GR and FGR structure for preventing edge breakdown and lower the dark current.
In our process, to define the p-type area and suppressing dark current, SiNx film is chosen for the diffusion hard mask and passivation layer. The p-type region is formed by diffusing zinc dopant into the InP cap layer using rapid thermal diffusion process (RTD), zinc is the most used p-type dopant for InP/InGaAs photodetector nowadays.
The different multiplication thickness for the device performance has been discussed in this thesis. Finally, an APD array device Punchthrough voltages are at 9.9±11.08V, and the breakdown voltages are at 31.7±1.61V. Dark current at low bias condition (-5V) are 1.34nA±2.42nA and dark current at 95% breakdown Voltage (-30.1V±1.51) are 959nA±2.07uA,gain are17.12±10.1.
CONTENT
摘要 ii
ABSTRACT iv
誌謝 vi
CONTENT vii
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter1.Introduction 1
1.1 Introduction to APD device 1
1.2 Motivation 4
Chapter2 The basic theory of Avalanche Photodiode 8
2.1 The basic theory of Avanlanche photodiode 8
2.2 InGaAs avalanche photodiode material 14
2.3 Junction Capacitance 18
2.4 Dark Current Mechanism 20
2.5 Responsivity and Quantum Efficiency 24
2.6 Multiplication gain 24
2.7 Characterization instruments 26
2.7.1 I-V Characteristic Measurement System 26
2.7.2 C-V Characteristic Measurement System 27
Chapter 3. Experimental procedur 29
3.1 Device structure 29
3.2 Mask design concept 31
3.3 Dielectric Deposition and Etching 36
3.4 Thermal Drive-in Process 37
3.4.1 Process Steps and Experimental Details of APD device 39
Chapter 4 Result and Discussion 49
4.1 Two different recess etching method 49
4.2 4x4 APD array characteristic 59
Chapter 5 Conclusions 66
Reference 68

[1] Y. Zhao, D. Zhang, L. Qin, Q. Tang, R. H. Wu, J. Liu, et al., "InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination," Optics express, vol. 19, pp. 8546-8556, 2011.
[2] C. Skrimshire, J. Farr, D. Sloan, M. Robertson, P. Putland, J. Stokoe, et al., "Reliability of mesa and planar InGaAs PIN photodiodes," IEE Proceedings J (Optoelectronics), vol. 137, pp. 74-78, 1990.
[3] M. Ravi, A. DasGupta, and N. DasGupta, "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment," Journal of crystal growth, vol. 268, pp. 359-363, 2004.
[4] B. Lee and I. Yun, "Effect of different etching processes on edge breakdown suppression for planar InP/InGaAs avalanche photodiodes," Microelectronics journal, vol. 33, pp. 645-649, 2002.
[5] S. Ganichev, A. Dmitriev, S. Emel'yanov, Y. Terent'ev, I. Yaroshetskii, and I. Yassievich, "Impact ionization in semiconductors under the influence of the electric field of an optical wave," Soviet physics JETP, vol. 63, pp. 256-263, 1986.
[6] L. Tarof, D. Knight, K. Fox, C. Miner, N. Puetz, and H. Kim, "Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery," Applied physics letters, vol. 57, pp. 670-672, 1990.
[7] Y. Liu, S. R. Forrest, J. Hladky, M. Lange, G. H. Olsen, and D. Ackley, "A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction," Journal of Lightwave Technology, vol. 10, pp. 182-193, 1992.
[8] J. Jung, Y. H. Kwon, K. S. Hyun, and I. Yun, "Reliability of planar InP-InGaAs avalanche photodiodes with recess etching," IEEE Photonics Technology Letters, vol. 14, pp. 1160-1162, 2002.
[9] L. Lin, W. Wang, N. Li, and W. Lu, "Theoretical study of separate absorption, grading, charge, and multiplication InGaAs/InP single photon avalanche diode," in 2008 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2008, pp. 83-84.
[10] S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghosh, "Comparative studies of p-type InP layers formed by Zn 3 As 2 and Zn 3 P 2 diffusion," Journal of electronic materials, vol. 32, pp. 932-934, 2003.
[11] O. Pitts, W. Benyon, D. Goodchild, and A. SpringThorpe, "Multiwafer zinc diffusion in an OMVPE reactor," Journal of Crystal Growth, vol. 352, pp. 249-252, 2012.
[12] A. Tosi, F. Acerbi, A. Dalla Mora, M. Itzler, and X. Jiang, "Active area uniformity of InGaAs/InP single-photon avalanche diodes," IEEE photonics journal, vol. 3, pp. 31-41, 2011.
[13] V. Swaminathan and A. Macrander, Materials aspects of GaAs and InP based structures: Prentice-Hall, Inc., 1991.
[14] R. W. Hoogeveen and A. P. Goede, "Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere," Infrared Physics & Technology, vol. 42, pp. 1-16, 2001.
[15] D. A. Neamen, Semiconductor physics and devices: basic principles: New York, NY: McGraw-Hill, 2012.
[16] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
[17] M. Fukuda, "Optical Semiconductor Devices''John Wiley & Sons," Inc, Canda, 1999.
[18] W. Grant, "Electron and hole ionization rates in epitaxial silicon at high electric fields," Solid-State Electronics, vol. 16, pp. 1189-1203, 1973.
[19] K.-S. Hyun, Y.-H. Kwon, and I. Yun, "Characteristics of a planar InP/InGaAs avalanche photodiode with a thin multiplication layer," Journal-Korean Physical Society, vol. 44, pp. L779-L784, 2004.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *