帳號:guest(3.141.35.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳亮亦
作者(外文):Chen, Liang-Yi
論文名稱(中文):八字形非線性光纖循環迴路鎖模雷射產生雙波長脈衝研究以及在入侵偵測的探討
論文名稱(外文):Study of Dual-Wavelength Pulse Generation Using Mode Locked Laser with Figure-Eight Nonlinear Fiber Loop and Investigation of Intrusion Detection
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):劉文豐
黃承彬
口試委員(外文):Liu, Wen-Fung
Huang, Chen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066518
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:鎖模入侵感測雙波長雷射耗散孤子共振諧波鎖模光纖雷射
外文關鍵詞:Mode-lockingIntrusion detectionDual-wavelength laserDissipative soliton resonanceHarmonic mode-lockingFiber laser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文將使用八字形光纖雷射共振腔,以摻鉺光纖作為增益介質,透過非線性循環鏡效應產生鎖模光纖雷射,非線性循環鏡相當於一具有強度相關的光學開關,因此可以利用此機制產生雷射脈衝。經示波器所觀察到的脈衝形狀為類矩形形狀,且脈衝寬度會隨者泵激光源功率的增加而變寬,透過調整共振腔內的偏振控制器或是增加泵激光源功率將會產生諧波鎖模,此架構可產生十四階的諧波鎖模。透過在雷射共振腔加入兩個不同波長的薄膜濾波器,並經過適當的光纖彎曲,避免兩個波長光的增益競爭,產生穩定的雙波長脈衝,兩中心波長分別為1550.12 nm與1560.61 nm,且可透過增加泵激光源功率產生二階諧波鎖模。利用單波長的脈衝光源打入以非平衡干涉儀為架構的低同調干涉儀,可透過干涉訊號來辨別感測光纖是否受應力,藉此做為入侵偵測用途。
In this paper, we use erbium-doped fiber as the gain medium to generate mode-locked fiber laser pulses through a nonlinear loop mirror effect in a figure-eight laser resonator. A nonlinear loop mirror is equivalent to an intensity dependent optical switch , which has been used to generate laser pulses. The shape of the pulse is rectangular-like as appearing on the oscilloscope, and the pulse width will increases with the pump power. Harmonic mode-locked pulses can be achieved by adjusting the polarization controller in the cavity or by increasing the pump power. This structure can generate the fourteenth harmonic mode-locked pulses. Stable dual-wavelength pulses can be generated by using two different wavelengths of thin film filters in the laser cavity. Proper fiber bending is used to avoid gain competition between the lasing lights at the two wavelengths. The center wavelengths are 1550.12 nm and 1560.61 nm, respectively, and second harmonic mode-locked pulses can be generated by increasing the pump power. In the second part of the thesis, the mode-locked pulses at one wavelength launched into a low-coherence interferometer based on an unbalanced interferometer. The interference signal can be used to distinguish whether the sensing fiber is disturbed, so we can use it for intrusion detection.
第一章 序論 1
1.1研究背景 1
1.2研究目的與動機 2
1.3文獻回顧 3
1.3.1光纖雷射共振腔 3
1.3.2採用非線性極化旋轉的鎖模光纖雷射 4
1.3.3採用非線性循環鏡的鎖模光纖雷射 5
1.3.4以雙波長鎖模雷射產生兆赫波輻射(Terahertz wave generation through a dual-wavelength mode-locked laser) 6
1.4論文架構 7
第二章 原理與介紹 8
2.1光纖(Optical fiber) 8
2.2光纖耦合器(Fiber coupler) 9
2.3極化控制器(Polarization controller) 10
2.4薄膜濾波器(Thin-Film Filter, TFT) 11
2.5摻鉺光纖以及摻鉺光纖放大器(EDF and EDFA) 12
2.6鎖模 (Mode-lock) 14
2.7克爾效應(Kerr effect) 16
2.8非線性極化旋轉(Nonlinear polarization rotation, NPR) 17
2.9非對稱型耦合之非線性循環鏡 19
2.10對稱型耦合之非線性循環鏡 21
2.11低同調干涉儀 23
第三章 實驗架構 26
3.1八字型共振腔雷射鎖模雷射 26
3.2腔外摻鉺光纖放大器EDFA 27
3.3雙波長鎖模脈衝雷射 28
3.4脈衝雷射用於低同調干涉儀 30
第四章 實驗結果與分析 33
4.1八字形單波長鎖模雷射 33
4.1.1基本鎖模雷射脈衝量測 33
4.1.2基本鎖模雷射經EDFA放大 41
4.1.3諧波鎖模雷射(Harmonic mode lock) 46
4.2雙波長鎖模雷射 59
4.3低同調干涉儀作為防區偵測 72
4.3.1感測光纖中端敲擊 73
4.3.2感測光纖前、後端敲擊 75
第五章 結論與未來方向 79
5.1結論 79
5.2未來方向 80
參考文獻 81
[1] J. M. Senior, Optical Fiber Communications: Principle and Practice, 3rd edition, Financial Times/Prentice Hall, 2009.
[2] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 1st edition, Wiley Interscience, Hoboken, New Jersey, 1991.
[3] C. Saravanos, and R. Lowe, "Characterization techniques of single-mode fibers." in 1988 Symposium on Antenna Technology and Applied Electromagnetics, pp. 1-6, 1988.
[4] D. Gloge, “Optical fiber theory: Opportunities for advancement abound,” Radio Science, vol. 12, no. 4, pp. 479-490, 1977.
[5] T. Okoshi, “Recent advances in coherent optical fiber communication systems,” Journal of Lightwave Technology, vol. 5, no. 1, pp. 44-52, 1987.
[6] B. Pedersen, A. Bjarklev, J.H. Povlsen, K. Dybdal, and C.C. Larsen, "The design of erbium-doped fiber amplifiers." Journal of Lightwave Technology, vol. 9 no. 9 pp. 1105-1112, 1991.
[7] K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Journal of Lightwave Technology ,vol. 15, no. 8, pp. 1263-1276, 1997.
[8] T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, and M. Tsubokawa, "Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission," Journal of Lightwave Technology ,
vol. 29, no. 4, pp. 511-515, 2010.
[9] H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition, ” Applied Optics , vol. 34, no. 4, pp. 667-675, 1995.
[10] A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunnelling and Underground Space Technology, vol. 40, pp. 141-150, 2014.
[11] B.-O. Guan, H.-Y. Tam, and S.-Y. Liu, "Temperature independent fiber Bragg grating tilt sensor", IEEE Photonics Technology Letters, vol. 16, pp. 224-226, 2004.
[12] M. Deng, Y. Zhao, F. Yin, and T. Zhu, "Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing," IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2225-2228, 2016.
[13] Z.-k. Liu, Y.-m. Bo, B.-m. Zhou, J. Wang, and Y.-d. Huang, "Analysis of the mechanics and deformation characteristics of optical fiber acceleration sensor," in Optical Measurement Technology and Instrumentation, vol. 10155: International Society for Optics and Photonics, pp. 101553U, 2016.
[14] R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Optics Letters, vol. 38, no. 9, pp. 1539-1541, 2013.
[15] Y. Zheng, X. Dong, C. C. Chan, P. P. Shum, and H. Su, "Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer," Optics Communications, vol. 336, pp. 5-8, 2015.
[16] K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, "Optical fiber sensors for the electric power industry," Optics and Lasers in Engineering, vol. 43, no. 3-5, pp. 511-526, 2005.
[17] Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer,” IEEE Sensors Journal, vol. 14, no. 1, pp. 167-170, 2013.
[18] Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, "Strain-insensitive and high temperature fiber sensor based on a Mach–Zehnder modal interferometer," Optical Fiber Technology, vol. 20, no. 1, pp. 24-27, 2014.
[19] F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, "Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array," Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
[20] Y.-J. Rao, "In-fibre Bragg grating sensors," Measurement Science and Technology, vol. 8, no. 4, p. 355, 1997.
[21] L. Zhao and X. Huang, "Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor," in 2016 International Conference on Condition Monitoring and Diagnosis (CMD): IEEE, pp. 667-670, 2016.
[22] W. Liu, M. Li, C. Wang, and J. Yao, "Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio," Journal of Lightwave Technology, vol. 29, no. 9, pp. 1239-1247, 2011.
[23] M. Aktas, T. Akgun, M. U. Demircin, and D. Buyukaydin, "Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications," in Fiber Optic Sensors and Applications XIV, vol. 10208: International Society for Optics and Photonics, p. 102080G, 2017.
[24] Y. Tong, Z. Li, J. Wang, and C. Zhang, "Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR," in CLEO: Science and Innovations: Optical Society of America, p. JW2A. 16, 2017.
[25] F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, "Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array," Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
[26] G. Luo C. Zhang, L. Li, Z. Ma, T. Lan, C. Li, and W. Lin., "Distributed fiber optic perturbation locating sensor based on dual Mach-Zehnder interferometer," in International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, vol. 6622: International Society for Optics and Photonics, p. 66220Z, 2008.
[27] T. Hansel, J. Müller, C. Falldorf, C. Von Kopylow, W. Jüptner, R. Grunwald, G. Steinmeyer, and U. Griebner, “Ultrashort-pulse dual-wavelength source for digital holographic two-wavelength contouring,” Applied Physics B, vol. 89, no. 4, pp. 513-516, 2007.
[28] R. Robinson, T. Gardiner, F. Innocenti, P. Woods, and M. Coleman, “Infrared differential absorption Lidar (DIAL) measurements of hydrocarbon emissions,” Journal of Environmental Monitoring, vol. 13, no. 8, pp. 2213-2220, 2011.
[29] M. Gedvilas, J. Mikšys, J. Berzinš, V. Stankevič, and G. Račiukaitis, “Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers,” Scientific Reports, vol. 7, no. 1, pp. 5218, 2017.
[30] H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, and D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd: YAlO/sub 3/laser in flux grown KTiOPO/sub 4/crystal,” IEEE journal of Quantum Electronics, vol. 28, no. 1, pp. 48-51, 1992.
[31] C. Sung, C. Lee, C. Chang, H. Liang, and Y. Chen, “Generation of terahertz optical beating from a simultaneously self-mode-locked Nd: YAG laser at 1064 and 1123 nm,” Optics Letters, vol. 42, no. 2, pp. 302-305, 2017.
[32] W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," Journal of Lightwave Technology, vol. 9, no. 2, pp. 234-250, 1991.
[33] Y. Song, M. Hu, C. Gu, L. Chai, C. Wang, and A. Zheltikov, "Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion," Laser Physics Letters, vol. 7, no. 3, pp. 230-235, 2010.
[34] M. Hofer, M. E. Fermann, F. Haberl, M. Ober, and A. Schmidt, "Mode locking with cross-phase and self-phase modulation," Optics Letters, vol. 16, no. 7, pp. 502-504, 1991.
[35] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, "Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser," IEEE Photonics Technology Letters, vol. 24, no. 14, pp. 1254-1256, 2012.
[36] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” Journal of Lightwave Technology, vol. 22, no. 1, pp. 57-62, 2004.
[37] B. Wu, Y. Liu, and Z. Dai, "Narrow linewidth fiber grating FP cavity laser and application," in 2006 International Conference on Communications, Circuits and Systems, vol. 3: IEEE, pp. 1971-197, 2006.
[38] K. Xu, J. Wu, X. B. Hong, and J. T. Lin, "Two different operation regimes of fiber laser based on nonlinear polarization rotation: Passive mode-locking and multiwavelength emission," IEEE Photonics Technology Letters, vol. 20, no. 12, pp. 979-981, 2008.
[39] L. Zhao, A. Bartnik, Q. Tai, and F. Wise, "Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror," Optics Letters, vol. 38, no. 11, pp. 1942-1944, 2013.
[40] G. Xie, D. Tang, H. Luo, H. Zhang, H. Yu, J. Wang, X. Tao, M. Jiang, and L. Qian, “Dual-wavelength synchronously mode-locked Nd: CNGG laser,” Optics Letters, vol. 33, no. 16, pp. 1872-1874, 2008.
[41] J.-L. Xu, S.-Y. Guo, J.-L. He, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Applied Physics B, vol. 107, no. 1, pp. 53-58, 2012.
[42] L. Kong, Z. Qin, G. Xie, X. Xu, J. Xu, P. Yuan, and L. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm: CaYAlO 4 laser,” Optics Letters, vol. 40, no. 3, pp. 356-358, 2015.
[43] Y. Liu, K. Zhong, J. Mei, C. Liu, J. Shi, X. Ding, D. Xu, W. Shi, and J. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Optics Express, vol. 25, no. 25, pp. 31988-31996, 2017.
[44] X. Sun, J. He, Z. Jia, J. Ning, R. Zhao, X. Su, Y. Wang, B. Zhang, K. Yang, and S. Zhao, “Dual-wavelength synchronously mode-locked Nd: LaGGG laser operating at 1.3 μm with a SESAM,” RSC Advances, vol. 7, no. 51, pp. 32044-32048, 2017.
[45] https://en.wikipedia.org/wiki/Optical_fiber
[46] J. M. Senior, Optical Fiber Communications: Principle and Practice, 3rd edition, Financial Times/Prentice Hall, 2009.
[47] https://www.newport.com/t/polarization-in-fiber-optics
[48] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-\mum Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems,” Journal of Lightwave Technology, vol. 17, no. 3, pp. 490, 1999.
[49] J. M. Liu, Photonic Devices, Cambridge University Press, 2005.
[50] Y. Sun, J. Zyskind, and A. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 4, pp. 991-1007, 1997.
[51] https://www.rp-photonics.com/mode_locking.html
[52] P. Lazaridis, G. Debarge, and P. Gallion, "Time–bandwidth product of chirped sech 2 pulses: application to phase–amplitude-coupling factor measurement," Optics Letters, vol. 20, no. 10, pp. 1160-1162, 1995.
[53] Z. Zhang, L. Zhan, S. Luo, and Y. Xia, "Observation of two-color pulses in a passively mode-locked erbium-doped fiber ring laser," Optical Engineering, vol. 45, no. 10, p. 104202, 2006.
[54] N. Doran and D. Wood, "Nonlinear-optical loop mirror," Optics Letters, vol. 13, no. 1, pp. 56-58, 1988.
[55] N. Seong, D. Y. Kim, and S. P. Veetil, "Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror," Optics Communications, vol. 280, no. 2, pp. 438-442, 2007.
[56] X. Wu, D. Tang, H. Zhang, and L. Zhao, "Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser," Optics Express, vol. 17, no. 7, pp. 5580-5584, 2009.
[57] Z.-C. Luo, W.-J. Cao, Z.-B. Lin, Z.-R. Cai, A.-P. Luo, and W.-C. Xu, "Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser," Optics Letters, vol. 37, no. 22, pp. 4777-4779, 2012.
[58] L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, "Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser," Optics Express, vol. 20, no. 1, pp. 265-270, 2012.
[59] S.-K. Wang, Q.-Y. Ning, A.-P. Luo, Z.-B. Lin, Z.-C. Luo, and W.-C. Xu, "Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser," Optics Express, vol. 21, no. 2, pp. 2402-2407, 2013.
[60] W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Physical Review A, vol. 78, no. 2, p. 023830, 2008.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *