帳號:guest(3.142.42.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃盈勳
作者(外文):Huang, Ying-Hsun
論文名稱(中文):腔增強自發參量下轉換產生之先驅單光子源
論文名稱(外文):Heralded single photon source via cavity-enhanced spontaneous parametric down conversion
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):陳應誠
陳彥宏
褚志崧
口試委員(外文):Chen, Ying-Cheng
Chen, Yen-Hung
Chuu, Chih-Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066516
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:量子單光子先驅共振腔自發參量下轉換鈮酸鋰
外文關鍵詞:QuantumSingle photonHeraldedCavitySpontaneous Parametric Down Conversion(SPDC)PPLNLithium niobate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
綜觀近5至10年的科技研革,從大數據[1],緊接雲端資源[2],所帶來的資訊安全議題,及這幾年的AI人工智慧[3]等等……,皆顯示傳統的測量及運算方式,已逐漸無法滿足人類的需求,近年來隨著google、IBM等科技巨頭陸續發表的量子產品,亦顯示「量子」科技的發展正如火如荼;然談到光的非古典量子態,最基本的莫過於數態和壓縮態,在現今各個量子應用上,單光子光源也都是項重大議題,故本研究欲利用腔增強自發參量下轉換,非線性晶體為週期性極化鈮酸鋰,及先驅機制來製備單光子光源,以探討其特性並期做更多應用。
Looking at the scientific revolution of these 5 to 10 years. We can find the shortcomings and insufficient of traditional computing from the application of big data, cloud system, and AI (Artificial Intelligence) etc. And with the market share importance from the technology magnates such as google, IBM, also showing us the development of “quantum technology” is in full swing. However, touch upon the non-classical quantum states of light. Nothing is more important than number state and squeezed state. Nowadays in quantum applications, single photon light source is always a big issue. Therefore, this research proposes to produce a heralded single photon source by cavity-enhanced spontaneous parametric down conversion, which nonlinear crystal is PPLN (Periodically Poled LiNbO_3), for using in quantum states understanding and quantum application.
第一章 、緒論.....................................................6
第二章 、理論.....................................................7
2-1 二階諧波產生 (Second Harmonic Generation, SHG)................7
2-1-1泵浦(Pump)光與倍頻光.........................................7
2-1-2有效非線性係數(Effective nonlinear parameter, d_eff).........10
2-1-3 非線性轉換效率(Efficiency, η_SHG)...........................15
2-1-4 准相位匹配(Quasi-phase-matching)...........................17
2-2 自發參量下轉換(Spontaneous Parametric Down Conversion, SPDC)..19
2-2-1 訊號(signal)、閒置(idler),與泵浦(pump)光....................19
2-2-3 光子對產生率(Photon-pair production rate)...................22
2-2-3 波長、折射率與溫度..........................................23
2-3 單光子光源(Single photon light source).......................25
2-3-1 二階自相關聯函數(Second-order auto-correlation function, g^(2))..........................................................25
2-3-2 先驅單光子源(Heralded Single Photon Source, HSPS)...........29
2-3-3 洪-歐-孟德爾干涉(Hong-Ou-Mandel Interference, HOMI).........34
第三章 、文獻回顧.................................................37
第四章 、方法與結果...............................................41
4-1 研究架構.....................................................41
4-2 SPDC頻譜(spectrum of SPDC)...................................44
4-3 符合窗與濾窗(Coincidence & Filtering window)..................47
4-3-1符合窗(Coincidence window, τ_c).............................47
4-3-2 濾窗(Filtering window, τ_f)................................50
4-4 先驅率(Heralding rate).......................................55
4-5 先驅單光子源之二階自相關聯函數:g_ssi^((2)).....................58
4-6 頻譜亮度(Spectral Brightness, SB)............................61
4-7 洪-歐-孟德爾干涉(Hong-Ou-Mandel Interference, HOMI)...........64
第五章 、結論.....................................................67
參考文獻.........................................................70
附錄、系統儀器規格................................................74
I) Laser, crystal, and cavity................................74
II) Detection – The spec of our SNSPD........................76
III) SINGLE PHOTON COUNTING – THE SPEC OF QUTAG..............78
IV) STABILIZATION – POUND-DREVER-HALL, PDH..................79
[1] 資訊中心, 3. and 資訊中心, 3., 2020. .2017 年大數據發展的 8 個預測. [online] 3smarket-info.blogspot.com. Available at: <http://3smarket-info.blogspot.com/2016/12/2017-8.html> [Accessed 27 June 2020].
[2] 引爆資料中心革命:雲端運算 - StockFeel 股感StockFeel 股感. 2020. 引爆資料中心革命:雲端運算 - Stockfeel 股感. [online] Available at: [Accessed 27 June 2020].
[3] 數位時代. 2020. 資本市場正在追逐的AI大浪|數位時代. [online] Available at: [Accessed 27 June 2020].
[4] Ho, N., 2020. 用最簡單的例子告訴你:什麼是量子電腦的運算方式?. [online] TechNews 科技新報. Available at: [Accessed 1 July 2020]. [5] Www1.cgmh.org.tw. 2020. 單光子電腦斷層掃描. [online] Available at: [Accessed 1 July 2020].
[6] 王真, 2020. 網易郵報. [online] 科普:什麼是量子通訊?量子衛星有啥價值?. Available at: [Accessed 1 July 2020].
[7] 數位時代. 2020. 驅動AI、醫療、通訊新變革,量子電腦將顛覆世界|數位時代. [online] Available at: [Accessed 27 June 2020].
[8] 2014. Spontaneous Parametric Down-Conversion And Quantum Entanglement. Bachelor of Science. Portland State University.
[9] Rambach, M. (2017). Narrowband Single Photons for Light-Matter Interfaces. Doctor. The University of Queensland.
[10] C. Couteau, “Spontaneous parametric down-conversion,” Contemporary Physics, vol. 59, no. 3, pp. 291–304, 2018.
[11] Fiorentino, M., Spillane, S., Beausoleil, R., Roberts, T., Battle, P. and Munro, M. (2007). Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. Optics Express, 15(12), p.7479.
[12] Gayer, O., Sacks, Z., Galun, E. and Arie, A., 2008. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Applied Physics B, 94(2), pp.367-367.
[13] Emanueli, S. and Arie, A. (2003). Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4. Applied Optics, 42(33), p.6661.
[14] Walls, D. and Milburn, G. (2011). Quantum optics. Berlin: Springer.
[15] Blauensteiner, B., Herbauts, I., Bettelli, S., Poppe, A. and Hübel, H. (2009). Photon bunching in parametric down-conversion with continuous-wave excitation. Physical Review A, 79(6).
[16] Zhang, Y., Kasai, K. and Watanabe, M. (2002). Investigation of the photon-number statistics of twin beams by direct detection. Optics Letters, 27(14), p.1244.
[17] Canonical Transformations in Quantum Field Theory. Lecture notes by M. Blasone.
[18] Shapiro, J. and Sun, K. (1994). Semiclassical versus quantum behavior in fourth-order interference. Journal of the Optical Society of America B, 11(6), p.1130.
[19] Razavi, M., Söllner, I., Bocquillon, E., Couteau, C., Laflamme, R. and Weihs, G. (2009). Characterizing heralded single-photon sources with imperfect measurement devices. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(11), p.114013.
[20] Fadhali, M., 2012. Advanced Photonic Sciences. Rijeka, Croatia: InTech.
[21] Wee, T., Tzeng, Y., Han, C., Chang, H., Fann, W., Hsu, J., Chen, K. and Yu, Y. (2007). Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond†. The Journal of Physical Chemistry A, 111(38), pp.9379-9386.
[22] Sipahigil, A., Jahnke, K., Rogers, L., Teraji, T., Isoya, J., Zibrov, A., Jelezko, F. and Lukin, M. (2014). Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Physical Review Letters, 113(11).
[23] Hanschke, L., Fischer, K., Appel, S., Lukin, D., Wierzbowski, J., Sun, S., Trivedi, R., Vučković, J., Finley, J. and Müller, K. (2018). Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Information, 4(1).
[24] Senellart, P., Solomon, G. and White, A. (2017). High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology, 12(11), pp.1026-1039.
[25] Rri.res.in. 2020. Quic Lab. [online] Available at: <http://www.rri.res.in/quic/resources/opn2019/> [Accessed 20 March 2020].
[26] Rambach, M., Nikolova, A., Weinhold, T. and White, A. (2016). Sub-megahertz linewidth single photon source. APL Photonics, 1(9), p.096101.
[27] Lyons, A., Knee, G., Bolduc, E., Roger, T., Leach, J., Gauger, E. and Faccio, D., 2018. Attosecond-resolution Hong-Ou-Mandel interferometry. Science Advances, 4(5), p.eaap9416.
[28] Ou, Z. and Lu, Y. (1999). Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons. Physical Review Letters, 83(13), pp.2556-2559.
[29] Zhang, H., Jin, X., Yang, J., Dai, H., Yang, S., Zhao, T., Rui, J., He, Y., Jiang, X., Yang, F., Pan, G., Yuan, Z., Deng, Y., Chen, Z., Bao, X., Chen, S., Zhao, B. and Pan, J. (2011). Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics, 5(10), pp.628-632.
[30] Slattery, O., Ma, L., Zong, K. and Tang, X. (2019). Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion. Journal of Research of the National Institute of Standards and Technology, 124.
[31] Scholz, M., Koch, L. and Benson, O., 2009. Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Optics Communications, 282(17), pp.3518-3523.
[32] Bettelli, S., 2010. Comment on “Coherence measures for heralded single-photon sources”. Physical Review A, 81(3).
[33] Dur.ac.uk. 2020. Department Of Physics : Poisson Distribution - Durham University. [online] Available at: [Accessed 2 June 2020].
[34] Refractiveindex.info. 2020. Refractive Index Of Linbo3 (Lithium Niobate) - Zelmon-E. [online] Available at: [Accessed 2 July 2020].
[35] Scholz, M., Koch, L. and Benson, O., 2009. Statistics of Narrow-Band Single Photons for Quantum Memories Generated by Ultrabright Cavity-Enhanced Parametric Down-Conversion. Physical Review Letters, 102(6).
[36] Scholz, M., Koch, L., Ullmann, R. and Benson, O., 2009. Single-mode operation of a high-brightness narrow-band single-photon source. Applied Physics Letters, 94(20), p.201105.
[37] Scholz, M., Koch, L. and Benson, O., 2009. Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Optics Communications, 282(17), pp.3518-3523.
[38] Fekete, J., Rieländer, D., Cristiani, M. and de Riedmatten, H., 2013. Ultranarrow-Band Photon-Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks. Physical Review Letters, 110(22).
[39] Zhou, Z., Ding, D., Li, Y., Wang, F. and Shi, B., 2013. Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. Journal of the Optical Society of America B, 31(1), p.128.
[40] Ahlrichs, A. and Benson, O., 2016. Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Applied Physics Letters, 108(2), p.021111.
[41] Luo, K., Herrmann, H., Krapick, S., Brecht, B., Ricken, R., Quiring, V., Suche, H., Sohler, W. and Silberhorn, C., 2015. Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New Journal of Physics, 17(7), p.073039.
[42] Tian, L., Li, S., Yuan, H. and Wang, H., 2016. Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line. Journal of the Physical Society of Japan, 85(12), p.124403.
[43] Black, E., 2001. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69(1), pp.79-87.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *