|
1. Huang, P.-C., et al., Polarization control of isolated high-harmonic pulses. Nature Photonics, 2018. 12(6): p. 349-354. 2. Johansson, J.O., et al., Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution. Chemical Science, 2016. 7(12): p. 7061-7067. 3. Xiang, H., G. Lefkidis, and W. Hübner, Unified theory of ultrafast femtosecond and conventional picosecond magnetic dynamics in the distorted three-center magnetic cluster Ni3Na2. Physical Review B, 2012. 86(13): p. 134402. 4. Wu, B., et al., Terahertz Electro-Optic Sampling in Thick ZnTe Crystals Below the Reststrahlen Band With a Broadband Femtosecond Laser. IEEE Transactions on Terahertz Science and Technology, 2018. 8(3): p. 305-311. 5. Sansone, G., et al., Isolated Single-Cycle Attosecond Pulses. Science, 2006. 314(5798): p. 443-446. 6. Sansone, G., et al., Mirror dispersion control of a hollow fiber supercontinuum. Applied Physics B, 2004. 78(5): p. 551-555. 7. Lavenu, L., et al., High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage. Optics Express, 2017. 25(7): p. 7530-7537. 8. Guo, X., et al., Generation of 300 nm bandwidth 0.5 mJ pulses near 1 um in a single stage gas filled hollow core fiber. Optics Express, 2017. 25(18): p. 21171-21179. 9. Seidel, M., et al., All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses. Optics Express, 2016. 24(9): p. 9412-9428. 10. Weitenberg, J., et al., Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 μJ pulse energy and 300 W average power. Optics Express, 2017. 25(17): p. 20502-20510. 11. Lavenu, L., et al., Nonlinear pulse compression based on a gas-filled multipass cell. Optics Letters, 2018. 43(10): p. 2252-2255. 12. Ueffing, M., et al., Nonlinear pulse compression in a gas-filled multipass cell. Optics Letters, 2018. 43(9): p. 2070-2073. 13. Lu, C.-H., et al., Generation of intense supercontinuum in condensed media. Optica, 2014. 1(6): p. 400-406. 14. Lu, C.-H., et al., Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Optics Express, 2019. 27(11): p. 15638-15648. 15. Hwang, S.I., et al., Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method. Scientific Reports, 2019. 9(1): p. 1613. 16. Hädrich, S., et al., Energetic sub-2-cycle laser with 216 W average power. Optics Letters, 2016. 41(18): p. 4332-4335. 17. Lavenu, L., et al., High-power two-cycle ultrafast source based on hybrid nonlinear compression. Optics Express, 2019. 27(3): p. 1958-1967. 18. Homoelle, D., et al., Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide. Optics Letters, 2002. 27(18): p. 1646-1648. 19. Liu, Z.-B., et al., Nonlinear ellipse rotation modified Z-scan measurements of third-order nonlinear susceptibility tensor. Optics Express, 2007. 15(20): p. 13351-13359. 20. Xu, Y., et al., Nonlinear temporal pulse cleaning techniques and application. High Power Laser Science and Engineering, 2013. 1(2): p. 98-101. 21. Ricci, A., et al., Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation. Vol. 84. 2013. 043106. 22. Jullien, A., et al., Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Vol. 84. 2006. 409-414. 23. Zaouter, Y., et al., Temporal cleaning of a high-energy fiber-based ultrafast laser using cross-polarized wave generation. Optics Letters, 2011. 36(10): p. 1830-1832. 24. Thaury, C., et al., Plasma mirrors for ultrahigh-intensity optics. Nature Physics, 2007. 3: p. 424. 25. Doumy, G., et al., Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Physical Review E, 2004. 69(2): p. 026402. 26. Buldt, J., et al., Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra. Optics Letters, 2017. 42(19): p. 3761-3764. 27. Nibbering, E.T.J., et al., Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. Journal of the Optical Society of America B, 1997. 14(3): p. 650-660. 28. Liu, W. and S. L. Chin, Direct measurement of the critical power of femtosecond Ti: Sapphire laser pulse in air. Vol. 13. 2005. 5750-5. 29. Milam, D., Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics, 1998. 37(3): p. 546-550. 30. Cheng, Y.-C., et al., Supercontinuum generation in a multi-plate medium. Optics Express, 2016. 24(7): p. 7224-7231. 31. Weiner, A.W., Ultrafast Optics. 2009. 1-580. 32. Gagnon, J., E. Goulielmakis, and V.S. Yakovlev, The accurate FROG characterization of attosecond pulses from streaking measurements. Applied Physics B, 2008. 92(1): p. 25-32.
|