帳號:guest(3.133.132.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王華緯
作者(外文):Wang, Hua-Wei
論文名稱(中文):以化學濕式蝕刻形成表面倒金字塔之單晶矽太陽能電池研究
論文名稱(外文):Texturing with Chemical Wet Etching to Form Inverted Pyramids on Surfaces of Single Crystalline Silicon Solar Cells
指導教授(中文):王立康
指導教授(外文):Wang, Li-karn
口試委員(中文):陳昇暉
甘炯耀
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:106066501
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:製絨倒金字塔結構
外文關鍵詞:texturinginverted pyramids
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:44
  • 收藏收藏:0
太陽能電池的研究除了致力於效率的提升以外,製程成本的降低也是格外的重要。本論文主要探討的是一種不同於業界的化學濕式蝕刻對單晶太陽能電池的表面進行製絨,形成倒金字塔結構以進一步降低反射率。現今一般使用的MCCE製絨技術因為有金屬輔助的關係造成成本相對高昂,而本論文探討的化學溶液不需使用任何金屬就能達到理想尺寸的倒金字塔結構,接著使用POCl3擴散形成n+後以PECVD機台鍍上SiNx作為抗反射層,最後網印正面銀漿與背面鋁漿後進行共燒,然後量測轉換效率以佐證本製絨技術是否達到業界製程的效率。

除了效率探討以外,本論文也呈現了大量表面結構的SEM量測,不同的溶液或是不同的蝕刻時間都會對表面孔洞尺寸造成很大的影響,而孔洞尺寸的理想範圍大概是在2μm左右,如此抗反射層以及最後的電極網印才能較完美的與粗糙化表面接觸,降低反射率以及接觸電阻。最後共燒完成後,背面鋁漿形成的BSF厚度根據SEM量測顯示為4~5μm。

而最後的I-V特性量測,我們發現雖然效率可以完全達到業界的水準,但Rsh都偏低導致Voc也偏低,很有可能是因為本研究使用的矽晶表面倒金字塔結構的尺寸太小,導致表面存在過多的缺陷之故。
In addition to improving the efficiencies of solar cells, the reduction of process cost is also an important issue. This thesis mainly discusses a new chemical wet etching method for texturing the surfaces of single crystalline silicon solar cells, in which inverted pyramids are formed on the surfaces without using a metal catalyzed chemical etching(MCCE) method. The MCCE texturing technique recently developed is relatively expensive in forming either porosities or inverted pyramids. On the contrary, the chemical wet etching method discussed in this paper does not require any metal to achieve the desired size of the inverted pyramids. After inverted pyramids are formed on the surface, we then use POCl3 to form an n+ layer on the front surface. Next, a PECVD SiNx layer is deposited on the front surface and used as an anti-reflection layer. Finally, Al paste and silver paste are, respectively, screen-printed on the back and front surfaces of the silicon solar wafer, followed by a co-firing process.

This paper also presents SEM photographs to show the surface morphologies. Different solutions or different etching times will have an influence on the size and distribution uniformity of the inverted pyramids. Several solar cells are fabricated to show the comparison of the devices with different surface morphologies. It is found that the group of solar cells with uniformly-distributed inverted pyramids of ~900nm in size have a highest conversion efficiency of 19.16% on average.
第一章 序論 1
1-1 太陽能電池現況 1
1-2 研究背景 2
1-3 文獻回顧 3
1-4 研究目的 5
1-5 論文架構 5
第二章 太陽能電池原理 6
2-1 半導體材料結構與特性 6
2-2 半導體載子的產生與復合 7
2-3 太陽能電池之原理 10
2-3.1 P-N接面 10
2-3.2 太陽光譜 11
2-3.3 太陽電池之運作 13
2-3.4 太陽電池之等效電路 14
2-3.5 太陽能電池參數介紹 15
2-3.6 效率損失之原因與改善 16
2-3.7 背表面電場效應 18
第三章 實驗規劃與流程 19
3-1 實驗架構 19
3-2 使用儀器介紹 19
3-3 實驗步驟 23
3-3.1 RCA清洗 24
3-3.2 表面製絨 26
3-3.3 磷擴散及磷玻璃去除 26
3-3.4 抗反射層沉積(PECVD) 27
3-3.5 邊晶絕緣 28
3-3.6 電極網印 28
3-3.7 共燒結 28
第四章 實驗結果與討論 29
4-1 製絨表面之SEM 29
4-2 少數載子生命週期量測(lifetime) 36
4-3 反射率量測 37
4-4 電極網印成果 43
4-5 背表面電場SEM 45
4-6 效率量測及IV curve 47
第五章 結論及未來展望 51
第六章 參考資料 53

[1] N. Ahn, D. Y. Son, N. G. Park, “Highly reproducible perovskite solar cells with
average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base
adduct of lead(II) iodide,” Journal of the American Society,vol.137,pp.8696-
8699,2015
[2] https://kknews.cc/finance/4jk843.html
[3] A. Kumagai,”Texturization using metal catalyst wet chemical etching for
multicrystalline diamond wire sawn wafer,” Solar Energy Materials & Solar
Cells,133,pp. 216–222 (2015).
[4] F.Cao, K.Chen, J.Zhang, X.Ye, J.Li, S.Zou, and X.Su,” Next-generation mult
Icrystalline silicon solar cells:Diamond-wire sawing,nano-texture and high
efficiency,“Solar Energy Materials & Solar Cells ,141,pp.132–138(2015).
[5] M. Lippolda, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, E. Kroke,
”Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO3–H2SO4 mixtures,” Solar Energy Materials & Solar Cells,127,pp.104–110(2014).
[6] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of
high-efficiency HIT solar cells,” Solar Energy Materials & Solar Cells, vol 95,
pp.18–21 (2011).
[7] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. De Ceuster, K. R. McIntosh, D. D. Smith, and R. M. Swanson,” Manufacture of solar cells with 21% efficiency,” 19th European Photovoltaic Solar Energy Conference, 7-11 June 2004, Paris, France. Also: E. Franklin, K. Fong, K. McIntosh, A. Fell, A. Blakers, T. Kho, D. Walter, D. Wang, N. Zin, M. Stocks, E.-C. Wang, N. Grant, Y. Wan, Y. Yang, X. Zhang, Z. Feng,and P. J. Verlinden,”Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell,” Progress in Photovoltaics: Research and Applications 2016; 24:411-427.
[8]“Panasonic HITR solar cell achieves world’s highest energy conversion efficiency of 25.6% at research level,” Public Relations Development Office, Panasonic Corp.,Osaka , Japan, Apr. 2014.
[9] C. W. Kuo, T. M. Kuan, L. G. Wu, C. C. Huang, S. I. Peng, and C. Y. Yu,
“Optimized back side process for high performance mono silicon PERC solar
cells,”Photovoltaic Specialists Conference, pp.2928-2930, 2016.
[10] M. Hofmann, S. Kambor, C. Schmidt, D. Grambole, J. Rentsch, S. Glum, and
R. Preu,“Firing stable surface passivation using All-PECVD stacks of SiOx-H and SiNx-H,”22nd European Photovoltaic Solar Energy Conference and Exhibition, pp.1030-1033, 2007.
[11] J. Schmidt, Mark, and A. Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapor-deposited SiN films and thin thermal SiO2/plasma SiN stacks,”Semiconductor Science and Technology, vol.16, pp164-170,2001.
[12] I. Martin. M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla,
“Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films,”Applied Physics Letters, vol. 79,pp. 2199-2201, 2001.
[13] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M.
M. Kessels,“Surface passivation of high-efficiency silicon solar cells by atomic-
layer-deposited Al2O3,”Progress in Photovoltaics: Research and Applications,
vo1.16, pp. 461-466, 2008.
[14] Hoex, B., et al., “ Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3, ”Applied Physics Letters, vo1.91, pp.107-112, 2007.
[15] http://pub.tust.edu.tw/mechanic/mclab/public_html/_private/electronics/semicon
ductor/extrinsic.htm
[16] 維基百科 少數載子 Available from:
https://zh.wikipedia.org/zh-tw/載流子
[17] W. Schockely, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” Journal of Applied Physics,32(3),pp.510-519,1961.
[18] 維基百科 半導體能隙結構 , Available from: https://zh.wikipedia.org/wiki/File:In_direct-Bandgap.
[19] 維基百科 歐傑復合 Available from:
https://zh.wikipedia.org/zh-tw/歐傑效應
[20] Shockley-Read-Hall機制 Available from:
https://www.tf.unikiel.de/matwis/amat/semi_en/kap_2/backbone/r2_3_3.html
[21] 維基百科 漂移電流 Available from:
https://zh.wikipedia.org/zh-tw/漂流電流
[22] 維基百科 P-N Junction Available from:
https://zh.wikipedia.org/wiki/PN接面
[23] 太陽光譜Air Mass Available from:
https://read01.com/QjM0KJ.html#.XS1k9-gzZPY
[24] 太陽電池原理 Available from:
http://eportfolio.lib.ksu.edu.tw/user/T/H/T098000033-20110511112715.pdf
[25] 太陽電池等效電路 Available from:
http://physcourse.thu.edu.tw/galechu/wp-content/uploads/sites/8/2018/09/太
陽能電池-0927new.pdf
[26] 太陽電池I-V curve Available from:
http://muchong.com/html/201610/10735055_2.html
[27] S. Joonwichien, S. Utsunomiya, Y. Kida, M. Moriya, K. Shirasawa, and H. Takato, “Improved Rear Local Contact Formation Using Al Paste Containing Si for Industrial PERC Solar Cell,” IEEE journal of photovoltaics, vol. 8, no. 1, january 2018
[28] 財團法人半導體中心高溫擴散爐管 Available from:
http://semi.tcfst.org.tw/Semi/Thermal-Oxide.asp
[29] 綠能矽晶片自動網印機 Available from:
https://www.atma.com.tw/zh-TW/product/AT-25PSC.html
[30] 日新高溫燒結爐 Available from:
http://www.risine.com/product/20140820/61.html
[31] 維基百科 RCA clean Available from:
https://en.wikipedia.org/wiki/RCA_clean.
[32] 太陽能科普系列-擴散篇 Available from:
https://news.solarbe.com/201711/21/128310.html
[33] 淺談各種太陽能板之抗反射層 Available from:
https://www.shs.edu.tw/works/essay/2009/03/2009033106021135.pdf
[34] 國立清華大學光電工程研究所王立康教授實驗手札
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *