|
1. Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. ArXiv, abs/1508.05326, 2015.
2. Christopher Bryant and Ted Briscoe. Language model based grammatical error correction without annotated training data. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 247–253, 2018.
3. Christopher Bryant, Mariano Felice, and Ted Briscoe. Automatic annotation and evaluation of error types for grammatical error correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 793–805, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1074. URL https://www.aclweb.org/anthology/P17-1074.
4. Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robinson. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint arXiv:1312.3005, 2013.
5. Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling. In 34th Annual Meeting of the Association for Computational Linguistics, pages 310–318, Santa Cruz, California, USA, June 1996. Association for Computational Linguistics. doi: 10.3115/981863.981904. URL https://www.aclweb.org/anthology/P96-1041.
6. Martin Chodorow, Joel Tetreault, and Na-Rae Han. Detection of grammatical errors involving prepositions. In Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, pages 25–30, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/W07-1604.
7. Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-decoder neural network for grammatical error correction. ArXiv, abs/1801.08831, 2018.
8. Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correction. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 568–572, Montr´eal, Canada, June 2012. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/N12-1067.
9. Rachele De Felice and Stephen G. Pulman. A classifier-based approach to preposition and determiner error correction in L2 English. In Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 169–176, Manchester, UK, August 2008. Coling 2008 Organizing Committee. URL https://www.aclweb.org/anthology/C08-1022.
10. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pretraining of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
11. Marina Dodigovic. Artificial intelligence and second language learning: An efficient approach to error remediation. 2007.
12. Nadir Durrani, Helmut Schmid, Alexander Fraser, Philipp Koehn, and Hinrich Sch¨utze. The operation sequence Model—Combining n-gram-based and phrasebased statistical machine translation. Computational Linguistics, 41(2):157186, June 2015. doi: 10.1162/COLI a 00218. URL https://www.aclweb.org/anthology/J15-2001.
13. Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP: A deep semantic natural language processing platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages 1–6, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/ W18-2501. URL https://www.aclweb.org/anthology/W18-2501.
14. Tao Ge, Furu Wei, and Ming Zhou. Reaching human-level performance in automatic grammatical error correction: An empirical study. CoRR, abs/1807.01270, 2018.
15. Aaron Gokaslan and Vanya Cohen. Openwebtext corpus.
16. Roman Grundkiewicz and Marcin Junczys-Dowmunt. The wiked error corpus: A corpus of corrective wikipedia edits and its application to grammatical error correction. In International Conference on Natural Language Processing, pages 478–490. Springer, 2014.
17. Na-Rae Han, Martin Chodorow, and Claudia Leacock. Detecting errors in english article usage by non-native speakers. Nat. Lang. Eng., 12:115–129, 2006.
18. Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings of the sixth workshop on statistical machine translation, pages 187–197. Association for Computational Linguistics, 2011.
19. Matthew Honnibal and Mark Johnson. An improved non-monotonic transition system for dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10. 18653/v1/D15-1162. URL https://www.aclweb.org/anthology/D15-1162.
20. Marcin Junczys-Dowmunt and Roman Grundkiewicz. Phrase-based machine translation is state-of-the-art for automatic grammatical error correction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1546–1556, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1161. URL https://www.aclweb.org/anthology/D16-1161.
21. Ting-Hui Kao, Yu-Wei Chang, Hsun-Wen Chiu, Tzu-Hsi Yen, Joanne Boisson, Jian-Cheng Wu, and Jason S. Chang. CoNLL-2013 shared task: Grammatical error correction NTHU system description. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 20–25, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/W13-3603.
22. Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto, and Kentaro Inui. An empirical study of incorporating pseudo data into grammatical error correction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1236–1242, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/ D19-1119. URL https://www.aclweb.org/anthology/D19-1119.
23. Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault. Automated grammatical error detection for language learners. Synthesis lectures on human language technologies, 3(1):1–134, 2010.
24. John Lee and Stephanie Seneff. Correcting misuse of verb forms. In Proceedings of ACL-08: HLT, pages 174–182, Columbus, Ohio, June 2008. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/ P08-1021.
25. Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam Shazeer, Niki Parmar, and Simon Tong. Corpora generation for grammatical error correction. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3291–3301, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1333. URL https://www.aclweb.org/anthology/N19-1333.
26. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019.
27. A. Mani. Solving text imputation using recurrent neural networks. 2015.
28. Kathleen F. McCoy, Christopher A. Pennington, and Linda Z. Suri. English error correction : A syntactic user model based on principled “ mal-rule ” scoring. 1996.
29. Lisa N. Michaud, Kathleen F. McCoy, and Christopher A. Pennington. An intelligent tutoring system for deaf learners of written english. In Assets ’00, 2000.
30. Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata, and Yuji Matsumoto. Mining revision log of language learning SNS for automated Japanese error correction of second language learners. In Proceedings of 5th International Joint Conference on Natural Language Processing, pages 147–155, Chiang Mai, Thailand, November 2011. Asian Federation of Natural Language Processing. URL https://www.aclweb.org/anthology/I11-1017.
31. Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. Ground truth for grammatical error correction metrics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 588–593, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-2097. URL https://www.aclweb.org/anthology/P15-2097.
32. Courtney Napoles, Keisuke Sakaguchi, and Joel Tetreault. Jfleg: A fluency corpus and benchmark for grammatical error correction. arXiv preprint arXiv:1702.04066, 2017.
33. Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel Tetreault. The CoNLL-2013 shared task on grammatical error correction. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 1–12, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/W13-3601.
34. Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and Christopher Bryant. The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 1–14, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-1701. URL https://www.aclweb.org/anthology/W14-1701.
35. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://www.aclweb.org/anthology/P02-1040.
36. Jong C. Park, Martha Palmer, and Clay Washburn. An English grammar checker as a writing aid for students of English as a second language. In Fifth Conference on Applied Natural Language Processing: Descriptions of System Demonstrations and Videos, pages 24–24, Washington, DC, USA, March 1997. Association for Computational Linguistics. doi: 10.3115/974281.974296. URL https://www.aclweb.org/anthology/A97-2014.
37. Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
38. David Schneider and Kathleen F. McCoy. Recognizing syntactic errors in the writing of second language learners. In 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 2, pages 1198–1204, Montreal, Quebec, Canada, August 1998. Association for Computational Linguistics. doi: 10.3115/980691.980765. URL https://www.aclweb.org/anthology/P98-2196.
39. Joel Tetreault, Jennifer Foster, and Martin Chodorow. Using parse features for preposition selection and error detection. In Proceedings of the ACL 2010 Conference Short Papers, pages 353–358, Uppsala, Sweden, July 2010. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/P10-2065.
40. Trieu H. Trinh and Quoc V. Le. A simple method for commonsense reasoning. ArXiv, abs/1806.02847, 2018.
41. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.
42. Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y.
43. Ng. Neural language correction with character-based attention. ArXiv, abs/1603.09727, 2016.
44. Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Ng, and Dan Jurafsky. Noising and denoising natural language: Diverse backtranslation for grammar correction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 619–628, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1057. URL https://www.aclweb.org/anthology/N18-1057.
45. Helen Yannakoudakis, Marek Rei, Øistein E. Andersen, and Zheng Yuan. Neural sequence-labelling models for grammatical error correction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2795–2806, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1297. URL https://www.aclweb.org/anthology/D17-1297.
46. Dayu Yuan, Julian Richardson, Ryan Doherty, Colin Evans, and Eric Altendorf. Semi-supervised word sense disambiguation with neural models. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1374–1385, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee. URL https://www.aclweb.org/anthology/C16-1130.
47. Zheng Yuan and Ted Briscoe. Grammatical error correction using neural machine translation. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 380–386, San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1042. URL https://www.aclweb.org/anthology/N16-1042.
48. Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 156–165, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10. 18653/v1/N19-1014. URL https://www.aclweb.org/anthology/N19-1014.
49. Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. 2015 IEEE International Conference on Computer Vision (ICCV), pages 19–27, 2015. |