帳號:guest(3.12.161.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱羿銓
作者(外文):Chiu, I-Chuan
論文名稱(中文):使用空時區塊編碼之基於離散哈特利轉換的濾波器組多載波系統
論文名稱(外文):A DHT-Based Filter Bank Multicarrier System Using Space-Time Block Coding
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):馮世邁
歐陽源
古聖如
口試委員(外文):Phoong, See-May
Ouyang, Yuan
Ku, Sheng-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:106064544
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:24
中文關鍵詞:離散哈特利轉換濾波器組多載波空時區塊編碼
外文關鍵詞:Discrete Hartley transformFilter Bank MulticarrierSpace-time block coding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:177
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們提出一種使用空時區塊編碼 (STBC) 之基於離散哈特利轉換 (discrete Hartley transform;DHT) 的濾波器組多載波 (FBMC) 系統,以取代現有使用STBC之基於離散傅立葉轉換 (discrete Fourier transform;DFT) 的FBMC系統;空時區塊編碼是一種廣泛運用於近代無線通訊系統的傳送分集技術,透過此種技術我們可以利用多根天線傳送資料,以改善位元錯誤率。在使用STBC的DHT-FBMC系統中,兩個鏡像對稱子載波之間具有特殊的通道分集特性,因此我們可以對其進行聯合資料偵測以獲得分集增益;在接收端,結合STBC偵測和基於最小均方誤差準則之full-tap per-two-tone等化器 (而不是傳統的single-tap per-tone等化器) 被用來偵測所要的訊號。電腦模擬結果顯示,我們所提出之使用STBC的DHT-FBMC系統比現有使用STBC的DFT-FBMC系統具有較佳的位元錯誤率效能。
In this thesis, we investigate an alternative filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT) using space-time block coding (STBC), instead of the existing discrete Fourier transform (DFT) using STBC. STBC is a widely adopted transmit diversity technique in modern wireless communication systems, where multiple antennas are used for data transmission to improve the bit-error-rate (BER) performance. In this DHT-FBMC system using STBC, there is distinct channel diversity between two mirror-symmetrical subcarriers, so that we can perform joint data detection on both subcarriers to exploit the diversity gain. At the receiver, a full-tap per-two-tone equalizer (rather than the conventional single-tap per-tone equalizer) combined with STBC detection based on the minimum mean-squared error criterion is used to detect the desired signal. Computer simulation results show that the DHT-FBMC system using STBC achieves better BER performance than the existing DFT-FBMC system using STBC.
Abstract i
Contents ii
List of Figures iii
List of Tables iv
I.Introduction................................................. 1
II.System Model.................................................4
A.DHT-FBMC/QAM Using Two Prototype Filters......................4
B.DHT-FBMC/QAM Using Two Prototype Filters and STBC.............9
III.Data Detection of the DHT-FBMC/QAM System Using STBC........12
IV.Simulation Results...........................................17
V.Conclusion....................................................21
References......................................................22

[1]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
[2]P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[3]A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
[4]B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May. 2011.
[5]L. Zhang, P. Xiao, A. Zafar, A. Quddus, and R. Tafazolli, “FBMC system: An insight into doubly dispersive channel impact,” Trans. Veh. Technol., vol. 66, no. 5, pp. 3942–3956, May 2017.
[6]P. Siohan and C. Roche, “Cosine-modulated filterbanks based on extended Gaussian functions,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3052–3061, Nov. 2000.
[7]J. Du and S. Signell, “Time frequency localization of pulse shaping filters in OFDM/OQAM systems,” in Proc. Int. Conf. Inf., Commun. Signal Process., Singapore, Dec. 2007.
[8]D. Dasalukunte, S. Mehmood, and V. Öwall, “Complexity analysis of IOTA filter architectures in faster-than-Nyquist multicarrier systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Houston, Texas, USA, Dec. 2011.
[9]R. Zakaria and D. Le Ruyet, “A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: Application to MIMO systems,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1112–1123, Mar. 2012.
[10]P. Chevalier, D. Le Ruyet, and R. Chauvat, “Maximum likelihood Alamouti receiver for filter bank based multicarrier transmissions,” in Proc. 20th Int. ITG Workshop Smart Antennas, Munich, Germany, Mar. 2016, pp. 210–216.
[11]X. Mestre and D. Gregoratti, “Parallelized structures for MIMO FBMC under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 64, no. 5, pp. 1200–1215, Mar. 2016.
[12]F. Rottenberg, X. Mestre, F. Horlin, and J. Louveaux, “Single-tap precoders and decoders for multiuser MIMO FBMC-OQAM under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 587–600, Feb. 2017.
[13]H. Nam, M. Choi, C. Kim, D. Hong, and S. Choi, “A new filter-bank multicarrier system for QAM signal transmission and reception,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, Australia, Jun. 2014, pp. 5227–5232.
[14]Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
[15]Z. Ho, K. Kim, C. Kim, Y. H. Yun, Y. H. Cho, and J. Y. Seol, “A QAM-FBMC space-time block code system with linear equalizers,” in Proc. IEEE Globecom Workshops, San Diego, USA, Dec. 2015, pp. 1–5.
[16]H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
[17]C. Kim, Y. H. Yun, K. Kim, and J. Y. Seol, “Introduction to QAM-FBMC: From waveform optimization to system design,” IEEE Commun. Mag., vol. 54, no. 11, pp. 66–73, Nov. 2016.
[18]D. Sim and C. Lee, “A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM,” IEEE Trans. Commun. Lett., vol. 21, no. 7, pp. 1465–1468, Jul. 2017.
[19]H. -S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
[20]C.-L. Wang, H.-S. Pan, and C.-T. Tuan, “Filter bank multicarrier transmission based on the discrete Hartley transform,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea, Apr. 2020.
[21]R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.
[22]J. Mao, C.-L. Wang, L. Zhang, C. He, P. Xiao, and K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile, Radio Commun. (PIMRC), Montreal, Canada, Oct. 2017.
[23]S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
[24]C.-H. Wang, “Data detection for a DHT-based MIMO filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
[25]S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: From Theory to Practice, 2nd ed. UK: John Wiley & Sons, 2011.
[26]K.-C. Yang, “Time and frequency synchronization for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *