帳號:guest(3.129.69.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳文修
作者(外文):Chen, Wen-Hsiu
論文名稱(中文):第五代無線通訊系統基於編碼書之高效率巨量多重輸入多重輸出天線波束調準方法
論文名稱(外文):Efficient Codebook-based Beam Alignment Method for Massive MIMO Antennas in 5G Wireless Communication Systems
指導教授(中文):蔡育仁
指導教授(外文):Tsai, Yuh-Ren
口試委員(中文):鍾偉和
梁耀仁
口試委員(外文):Chung, wei-ho
Liang, Yao-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:106064543
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:59
中文關鍵詞:編碼書波束調準多重輸入多重輸出毫米波
外文關鍵詞:CodebookBeamAlignmentMIMOmmWave
相關次數:
  • 推薦推薦:0
  • 點閱點閱:464
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文提供一種多波束天線陣列的波束調準方法,包括下列步驟:基地台依序採用多組多峰波束樣式來傳送數個同步訊號;用戶設備掃描同步訊號,並判斷接收功率最強的同步訊號,判斷接收該最強同步訊號所對應的接收波束方向,接著,用戶設備藉由隨機接取通道傳送初始接取訊息,該初始接取訊息包括(明示或是暗示)該最強同步訊號之索引;基地台在隨機接取通道上採用多組單峰波束樣式接收初始接取訊息,並判斷對初始接取訊息之接收功率最強的單峰波束樣式,最後,基地台將所判斷的最強接收單峰波束樣式與初始接取訊息中的該最強同步訊號索引所對應的多峰波束樣式的主波束進行比對,以確定傳送給用戶設備的最佳波束方向。
In this thesis, a beam alignment method for multi-beam antenna array is provided. The steps are summarized below: A base station (BS) sequentially uses one of a plurality of multi-modal beam patterns to transmit synchronization signals (SS). A user equipment (UE) scans the synchronization signals, and determines the synchronization signal with strongest received power and a receive beam direction corresponding to the strongest synchronization signal. Further, the user equipment transmits an initial access message including an (explicitly or implicitly) index of the strongest synchronization signal through a random access channel. The base station uses a plurality of single-modal beam patterns to receive the initial access message on the random access channel, and determines the single-modal beam pattern with a strongest access power for the initial access message. Finally, the base station determines an optimal beam direction for the transmission to the user equipment by comparing the strongest receive single-modal beam pattern and the multi-modal beam pattern corresponding to the index included in the initial access message.
ABSTRACT II
誌謝 IV
CONTENTS V
LIST OF FIGURES VI
LIST OF TABLES VIII
Chapter 1 Introduction 1
1.1 General Background Information 1
1.2 Related Works 3
Chapter 2 System Model and Channel Model 5
2.1 Hybrid Precoding for Massive MIMO System 5
2.2 Channel Model 6
2.3 Problem Formulation 8
Chapter 3 Beam Alignment Algorithm 9
3.1 Conventional Beam Search Scheme 9
3.2 Multi-Modal Beam Search Scheme 11
3.2.1 Synchronization Signals Transmission 11
3.2.2 Random Access Response 15
3.2.3 Decision of Optimal Beam 17
Chapter 4 Multi-Modal Beam Pattern Design 20
4.1 Phase Extraction of Multi-Beam Vector (PEMBV) Approach 20
4.2 Special Case of PEMBV 24
4.3 Multi-Beam by Spacing of Active Antennas (MBSAA) Approach 26
Chapter 5 Simulation Results 29
5.1 Evaluation of CDF of Link SNR Performance 30
5.2 Evaluation of Mean Angle Estimation Error (MAEE) Performance 38
5.3 Evaluation of Beam Alignment with Quantized Phase Shifter 48
Chapter 6 Conclusion 53
References 54
APPENDIX A 57

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang,“What will 5G be?,” IEEE J. Selec. Areas Commun., vol. 32, Jun. 2014, pp. 1065–1082.
[2] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014, pp. 186–195.
[3] R. W. Heath Jr, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Selec. Topics Signal Process., vol. 10, no. 3, Apr. 2016, pp. 436–453.
[4] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, no. 1, Aug. 2013, pp. 335–349.
[5] E. Björnson, L. V. der Perre, S. Buzzi, and E. G. Larsson, “Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences,” IEEE Wireless Commun., vol. 26, no. 2, Apr. 2019, pp. 100–108.
[6] T. E. Bogale, and L. B. Le, ‘‘Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges,’’ IEEE Veh. Technol. Mag., vol. 11, no. 1, Mar. 2016, pp. 64–75.
[7] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?,” IEEE Commun. Mag., vol. 52, no. 12, Dec. 2014, pp. 110–121.
[8] W. Roh, J. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014, pp. 106–113.
[9] D. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Inform. Theory, vol. 49, no. 10, Oct. 2003, pp. 2735–2747.
[10] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, May 2016, pp. 3380–3392.
[11] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment,” IEEE Trans. Wireless Commun., vol. 16, no. 9, Sep. 2017, pp. 5689–5701.
[12] Z. Xiao, P. Xia, and X.-G. Xia, “Hierarchical multi-beam search for millimeter-wave MIMO systems,” in Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), May 2016, pp. 1–5.
[13] N. J. Myers, A. Mezghani, and R. W. Heath, “Swift-Link: A compressive beam alignment algorithm for practical mmWave radios,” IEEE Trans. on Signal Process., vol. 67, no. 4, Feb. 2019, pp. 1104–1119.
[14] H. Yan, and D. Liu. “Multiple RF chains assisted parallel beam search for mmWave hybrid beamforming systems,” in Proc. IEEE 2018 Globecom Workshops (GC Wkshps), Dec. 2018, pp. 1–6.
[15] X. Song, S. Haghighatshoar, and G. Caire, “A scalable and statistically robust beam alignment technique for mm-wave systems,” IEEE Trans. Wireless Commun., vol. 17, no. 7, Jul. 2018, pp. 4792–4805.
[16] H.-Y. Cheng, C.-C. Liao, and A.-Y. Wu. “Joint multi-beam training and codebook design for indoor high-throughput transmissions under limited training steps,” IEEE Trans. Veh. Technol., vol. 68, no. 6, Jun. 2019, pp. 5585–5597.
[17] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, Oct. 2014, pp. 831–846.
[18] J. Palacios, D. D. Donno, and J. Widmer, “Tracking mm-Wave channel dynamics: Fast beam training strategies under mobility,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.
[19] D. Qiao, H. Qian, and G. Y. Li, “Multi-resolution codebook design for two stage precoding in FDD massive MIMO networks,” in Proc. 18th IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Sapporo, Japan, Jul. 2017, pp. 1–5.
[20] W. L. Stutzman, and G. A. Thiele, Antenna Theory and Design, 3rd Edition. New York: Wiley, 2013, pp. 307.
[21] Y.-P. Lin, “On the quantization of phase shifters for hybrid precoding systems,” IEEE Trans. Signal Process., vol. 65, no. 9, May 2017, pp. 2237–2246.
[22] A. Ali, N. Gonzalez-Prelcic, and R. W. Heath, “Millimeter wave beam-selection using out-of-band spatial information,” IEEE Trans. Wireless Commun., vol. 17, no. 2, Feb. 2018, pp. 1038–1052.
[23] K. Chen, and C. Qi. “Beam design with quantized phase shifters for millimeter wave massive MIMO.” in Proc. 2018 IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *