帳號:guest(3.146.176.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳玠妏
作者(外文):Chen, Chieh-Wen
論文名稱(中文):小世界塊模型
論文名稱(外文):Small-world Block Model
指導教授(中文):李端興
指導教授(外文):Lee, Duan-Shin
口試委員(中文):張正尚
林華君
口試委員(外文):Chang, Cheng-Shang
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:106064525
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:33
中文關鍵詞:小世界模型皮爾遜連接鏈節相關係數聚集係數社區偵測
外文關鍵詞:small world modelPearson degree correlationclustering coefficientcommunity detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:612
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
在本篇的論文中,我們提出一個小世界塊模型(small-world block model)。並針對其模型分析皮爾遜連接鏈節相關函數(Pearson degree correlation)和集聚係數(clustering coefficient)。只要適當的選擇模型中的參數,模型就可以是同類性或是不同類性。
In this paper we present a small-world block model. We analyze the
Pearson degree correlation function and the clustering coefficient of this model. We show that by properly choosing values for the parameters in the model, the model can be assortative or disassortative.
中文摘要---i
Abstract---ii
Acknowledgements---iii
List of Figures---vi
List of Tables---vii
1 Introduction---1
2 The Model---4
3 Pearson Degree Correlation Function---7
3.0.1 Analysis of E(X)---8
3.0.2 Analysis of E(XY)---13
3.0.3 A Special Case---17
4 Clustering Coefficient---20
5 Numerical Results---25
5.0.1 Degree Correlation and Clustering Coefficient---25
5.0.2 Community Detection---28
6 Conclusions---31
Bibliography---32
[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393, pp. 440–442, 1998.
[2] M. Newman, Networks: An Introduction. Oxford, 2010.
[3] F. Zaidi, “Small world networks and clustered small world networks with random connectivity,” Social Network Analysis and Mining, vol. 3, pp. 51–63, 2013.
[4] A. Saade, F. Krzakala, and L. Zdeborova, “Spectral clustering of graphs with the bethe hassian,” in NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 1, 2014, pp. 406–414.
[5] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova, “Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications,” Phys. Rev. E, vol. 84, no. 066106, 2011.
[6] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic block-models: First steps,” Social networks, vol. 5, no. 2, pp. 109–137,1983.
[7] M. Newman and D. Watts, “Scaling and percolation in the small-world network model,” Phys. Rev. E, vol. 60, pp. 7332–7342, 2000.
[8] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” ISCIS 2005, pp. 284–293, 2005.
[9] M. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, p.036104, 2006.
[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J. Stat. Mech., vol. 2008, no. 10, p. 10008, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *