帳號:guest(3.129.23.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王莉晴
作者(外文):Wang, Li-Ching
論文名稱(中文):SiME: 以指數隨機圖模型取樣進行特性網路的模組性嵌入
論文名稱(外文):SiME: Signed Network Modularity Embedding with Exponentially Twisted Sampling
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):李端興
林華君
口試委員(外文):Lee, Duan-Shin
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:106064519
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:模組性網路嵌入有號網路特性網路指數隨機圖模型取樣
外文關鍵詞:modularitynetwork embeddingsigned networksattributed networksexponentially twisted sampling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:194
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
網路嵌入目的在於學習網路中每個節點的低維向量表示式,並且同時保留網路的內在信息,網路嵌入有助於進一步的網路分析,例如社群偵測 (community detection)和鏈接預測 (link prediction)等應用。然而,大多數的社群網路具有節點特性或邊特性來表示節點和邊的資訊。對於有號網路 (signed network),邊特性代表著點與點之間的友誼/敵人或信任/不信任的關係。雖然已經有許多有號網路的嵌入模型被提出,但它們只支援其中一種關係的有號網路做嵌入,因此較難應用在大多數有號網路中使用。在這本論文中,我們提出了一個靈活且有效的特性網路的模組性嵌入(SiME),它利用指數隨機圖模型取樣保留網路中兩種關係的訊息,並且得到取樣網路 (sampled graph)。基於取樣網路,模組性 (modularity)的概念也可以被定義。然後,利用模塊性我們可以解決模塊化嵌入問題並獲得特性網路的嵌入結果。最後,利用真實網路資料進行實驗以說明我們的方法的有效性。
Network embedding aims to learn a low-dimensional vector representation for each node in a network that can preserve specific intrinsic information of the network. It facilitates further embedding tasks such as community detection and link prediction. However, most social networks have node attributes or edge attributes that represent the features of nodes and edges. For the signed network, the edge attributes indicate the friendship/enemy or trust/distrust relationships. Although there are many existing signed network embedding models, they only focus on one of the relationships. So it is hard to support most of the signed network.
In this thesis, we propose a flexible and effective Signed Network Modularity Embedding (SiME) framework which can capture two relationships information of network by using exponentially twisted sampling and obtain the sampled graph. Based on the sampled graph, the modularity of the graph can be defined. Then, using the modularity, we can solve the modularity embedding problem and obtain the embedding results of the attributed network. Experiments are conducted on real datasets to illustrate the effectiveness of our approach.
Abstract
Contents 1
List of Figures 3
1 Introduction 4
2 Related work 9
3 Sampled graph 11
3.1 Review of the probabilistic framework of sampled graphs . . . . . . . . . 11
3.2 Exponentially twisted sampling . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Generalized modularity embedding . . . . . . . . . . . . . . . . . . . . . 16
3.4 Estimating the generalized modularity matrix . . . . . . . . . . . . . . . 18
4 Signed network modularity embedding 22
4.1 Friendship embedding module . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Trust relationship embedding module . . . . . . . . . . . . . . . . . . . . 25
1
4.2.1 Proposed model - SiME . . . . . . . . . . . . . . . . . . . . . . . 26
5 Attributed network modularity embedding 28
6 Applications of exponentially twisted sampling 30
7 Experiments 32
7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Baseline algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.1 Signed network baseline algorithms . . . . . . . . . . . . . . . . . 34
7.2.2 Attributed network baseline algorithms . . . . . . . . . . . . . . . 35
7.3 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.1 Performance on Three Clusters . . . . . . . . . . . . . . . . . . . 37
7.5.2 Performance on Political blogs . . . . . . . . . . . . . . . . . . . . 38
7.5.3 Performance on BlogCatalog . . . . . . . . . . . . . . . . . . . . . 43
7.5.4 Parameters Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 43
8 Conclusions 47
9 Bibliography 48
[1] M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Advances in neural information processing systems, 2002, pp. 585-591.
[2] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social representations," in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014, pp. 701-710.
[3] S. Cao, W. Lu, and Q. Xu, "Grarep: Learning graph representations with global structural information," in Proceedings of the 24th ACM international on conference on information and knowledge management. ACM, 2015, pp. 891-900.
[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line: Large-scale information network embedding," in Proceedings of the 24th international conference on world wide web. InternationalWorld WideWeb Conferences Steering Committee, 2015, pp. 1067-1077.
[5] D. Wang, P. Cui, and W. Zhu, "Structural deep network embedding," in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016, pp. 1225-1234.
[6] A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks," in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016, pp. 855-864.
[7] W. Li, "Modularity embedding," in International Conference on Neural Information Processing. Springer, 2013, pp. 92-99.
[8] J. Kim, H. Park, J.-E. Lee, and U. Kang, "Side: Representation learning in signed directed networks," in Proceedings of the 2018 World Wide Web Conference on World Wide Web. InternationalWorld WideWeb Conferences Steering Committee, 2018, pp. 509-518.
[9] H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, "Shine: Signed heterogeneous information network embedding for sentiment link prediction," in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 2018, pp. 592-600.
[10] S. Yuan, X. Wu, and Y. Xiang, "Sne: signed network embedding," in Paci c-Asia conference on knowledge discovery and data mining. Springer, 2017, pp. 183-195.
[11] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, "Signed network embedding in social media," in Proceedings of the 2017 SIAM international conference on data mining. SIAM, 2017, pp. 327-335.
[12] C.-S. Chang, C.-C. Huang, C.-T. Chang, D.-S. Lee, and P.-E. Lu, "Generalized modularity embedding: a general framework for network embedding," arXiv preprint arXiv:1904.11027, 2019.
[13] C.-H. Chang, C.-S. Chang, C.-T. Chang, D.-S. Lee, and P.-E. Lu, "Exponentially twisted sampling for centrality analysis and community detection in attributed networks," IEEE Transactions on Network Science and Engineering, 2018.
[14] C.-S. Chang, C.-J. Chang, W.-T. Hsieh, D.-S. Lee, L.-H. Liou, and W. Liao, "Relative centrality and local community detection," Network Science, vol. 3, no. 4, pp. 445-479, 2015.
[15] M. E. Newman, "Fast algorithm for detecting community structure in networks," Physical review E, vol. 69, no. 6, p. 066133, 2004.
[16] C.-S. Chang, D.-S. Lee, L.-H. Liou, S.-M. Lu, and M.-H. Wu, "A probabilistic framework for structural analysis and community detection in directed networks," IEEE/ACM Transactions on Networking (TON), vol. 26, no. 1, pp. 31-46, 2018.
[17] P. Cui, X. Wang, J. Pei, and W. Zhu, "A survey on network embedding," IEEE Transactions on Knowledge and Data Engineering, 2018.
[18] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[19] C.-S. Chang, Performance guarantees in communication networks. Springer Science & Business Media, 2012.
[20] S. Juneja and P. Shahabuddin, "Rare-event simulation techniques: an introduction and recent advances," Handbooks in operations research and management science, vol. 13, pp. 291-350, 2006.
[21] M. E. Newman and M. Girvan, "Finding and evaluating community structure in networks," Physical review E, vol. 69, no. 2, p. 026113, 2004.
[22] L. A. Adamic and N. Glance, "The political blogosphere and the 2004 us election: divided they blog," in Proceedings of the 3rd international workshop on Link discovery. ACM, 2005, pp. 36-43.
[23] X. Huang, J. Li, and X. Hu, "Label informed attributed network embedding," in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM, 2017, pp. 731-739.
[24] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and C. Wang, "Anrl: Attributed network representation learning via deep neural networks." in IJCAI, 2018, pp. 3155-3161.
[25] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang, "Binarized attributed network embedding," in 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018, pp. 1476-1481.
[26] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016, pp. 785-794.
[27] L. v. d. Maaten and G. Hinton, "Visualizing data using t-sne," Journal of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *