帳號:guest(3.145.152.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃士軒
作者(外文):Huang, Shih-Hsuan.
論文名稱(中文):運用於多載波通訊系統之子載波索引調變設計與分析
論文名稱(外文):Design and Analysis of Subcarrier Index Modulation for Multi-carrier Communication Systems
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen-Ming
口試委員(中文):蔡育仁
鍾偉和
口試委員(外文):Tsai, Yuh-Ren
Chung, Wei-Ho
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:106064505
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:45
中文關鍵詞:索引調變多載波
外文關鍵詞:Index modulationMulti-carrier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:334
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於物聯網通訊系統來說,有效地使用有限的頻譜和功率來傳輸更多數據是非常關鍵的。與需要大頻寬和低延遲的行動通訊不同,許多物聯網應用是使用小尺寸封包以及對延遲是有容忍的,例如監測空氣品質,儀表數據傳輸等,因此,此篇論文的動機是設計出一個適用於短封包場景和多重連接技術,同時具有頻譜效率和節能或高能量效率的系統。

在此篇論文中,我們提出了子載波索引調變技術。子載波索引調變技術使用子載波索引來增加短封包場景的頻譜效率和能量效率。具體而言,子載波索引調變技術使用子載波的索引來製作索引,其除了調變信號位元之外還攜帶索引位元;此外,封包越短或是分配給使用者的子載波數量越少,子載波索引調變技術的頻譜使用效率越高;再者,此篇論文也分析了在不同參數條件下的位元誤碼率、頻譜效率以及能量效率。分析和模擬結果顯示,隨著數據傳輸量的增加,頻譜效率將隨之增加。此外,在相同調變參數下,子載波索引調變技術具有比多載波系統更好的能量效率增益。
For Internet-of-Things (IoT) communication systems, effective use of the limited spectrum and power to transmit more data is very crucial.
Unlike mobile communication, which requires large bandwidth and low latency, many IoT applications such as monitoring air quality, meter data transmission, and so on are using small size packet and large tolerance for delay. Therefore, the motivation is design a system, which is suitable for short packets scenarios and multiple access (MA), while having spectral efficiency (SE) and power saving or high energy efficiency (EE).

In this thesis, “Subcarrier Index Modulation” (SIM) scheme is proposed. SIM uses subcarrier-index to increase spectral efficiency (SE) and energy efficiency (EE) on short packet scenarios. To be specific, SIM scheme uses subcarrier-index to make index indices, which carry index bits in addition to the modulation signal bits. Also, the packet is shorter or the number of subcarriers allocated to user is smaller, the spectral efficiency (SE) of the SIM scheme is better. Moreover, BER performance, spectral efficiency (SE), and energy efficiency (EE) of different parameters are analyzed. Analytical and simulation results show that spectral efficiency (SE) will increase as the amount of data transmitted increases. Furthermore, SIM scheme has better energy efficiency (EE) gain than multi-carrier system under the same modulation order.
摘要i
Abstract ii
Contents iii
1 INTRODUCTION 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Contribution and Achievement . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 BACKGROUNDS 6
2.1 Orthogonal frequency-division multiplexing (OFDM) . . . . . . . . . . . . . 6
2.2 Spatial Modulation (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Orthogonal Frequency Division Multiplexing Index Modulation (OFDM-IM) 9
2.4 Index Modulation (IM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 SYSTEM MODEL 14
3.1 SIM System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 SYSTEM ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Block utilization analysis . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Error performance analysis . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Spectral efficiency analysis . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Minimum of number of total block . . . . . . . . . . . . . . . . . . . 25
3.2.5 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 SIMULATION RESULTS 26
4.1 Block utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 BER Performance of SIM System . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Spectral efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Minimum number of total block . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Comparison between SIM and OFDM-IM . . . . . . . . . . . . . . . . . . . 35
4.6.1 Comparison of BER between SIM and OFDM-IM and OFDM . . . . 35
4.6.2 Comparison of spectral efficiency between SIM and OFDM-IM . . . . 37
4.6.3 Comparison of energy efficiency between SIM and OFDM-IM . . . . 38
5 CONCLUSIONS 41
Bibliography 43
[1] M. D. R. et al., “Spatial modulation for generalized MIMO: Challenges, opportunities,
and implementation,” Proc. IEEE, vol. 102, pp. 56–103, Jan. 2014.
[2] Y. Yang and B. Jiao, “Information-guided channel-hopping for high data rate wireless
communication,” IEEE Commun. Lett., vol. 12, pp. 225–227, Apr. 2008.
[3] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,”
IEEE Transactions on Vehicular Technology, vol. 57, pp. 225–227, July. 2008.
[4] D. A. Basnayaka, M. D. Renzo, and H. Haas, “Massive but few active MIMO,” IEEE
Transactions on Vehicular Technology, vol. 65, pp. 6861–6877, Step. 2016.
[5] M. Di, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized
MIMO: Challenges opportunities and implementation,” Proceedings of the IEEE,
vol. 102, pp. 56–103, Jan. 2014.
[6] Cal-Braz, J. A., Sampaio-Neto, and Raimundo, “Low-complexity sphere decoding detector
for generalized spatial modulation systems,” IEEE Commun. Lett., vol. 18, pp. 949–
952, Jun. 2014.
[7] T. L. Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation
in large-scale multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 14,
pp. 3764–3779, Jul. 2015.
43
[8] T. Datta, H. Eshwaraiah, and A. Chockalingam, “Generalized space and frequency
index modulation,” IEEE Trans. Veh. Tech., vol. 65, pp. 4911–4924, Jul. 2016.
[9] B. Chakrapani, T. L. Narasimhan, and A. Chockalingam, “Generalized space-frequency
index modulation: Low-complexity encoding and detection,” Proc. IEEE Globecom
Workshops (GC Wkshps), pp. 1–6, Dec. 2015.
[10] E.Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun.
Mag., vol. 54, pp. 168–175, Jul. 2016.
[11] M. Di, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Orthogonal frequency division
multiplexing with index modulation,” IEEE Transactions on Signal Processing, vol. 61,
pp. 5536–5549, Nov. 2013.
[12] T. Datta, H. S. Eshwaraiah, and A. Chockalingam, “Generalized space-and-frequency
index modulation,” IEEE Transactions on Vehicular Technology, vol. 65, pp. 4911–4924,
July. 2016.
[13] T. Mao, Q. Wang, and Z. Wang, “Generalized dual-mode index modulation aided
OFDM,” IEEE Communications Letters, vol. 21, pp. 761–764, Apr. 2017.
[14] R. Fan, Y. J. Yu, and Y. L. Guan, “Generalization of orthogonal frequency division
multiplexing with index modulation,” IEEE Transactions on Wireless Communications,
vol. 14, pp. 5350–5359, Oct. 2015.
[15] T. Mao, Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “Dual-mode index modulation
aided OFDM,” IEEE Access, vol. 5, pp. 50–60, Feb. 2017.
[16] B. Jiao, “An opportunistic-bit scheme with IP styled communication,” 2017 9th International
Conference on Wireless Communications and Signal Processing (WCSP), Dec.
2017.
44
[17] Y. Chen, M. Yin, and B. Jiao, “An opportunistic-bit transmission scheme with enhanced
spectral efficiency,” 2017 Eighth International Workshop on Signal Design and
Its Applications in Communications (IWSDA), Nov. 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *