帳號:guest(18.118.146.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄧宏瑾
作者(外文):Teng, Hung-Jin
論文名稱(中文):穿隧式電荷捕捉記憶體之模擬設計與微縮探討
論文名稱(外文):Device Design and Scaling Consideration of Tunneling-based Charge-Trapping Memories
指導教授(中文):連振炘
施君興
指導教授(外文):Lien, Chen-Hsin
Shih, Chun-Hsing
口試委員(中文):崔秉鉞
張書通
陳建亨
口試委員(外文):Tsui, Bing-Yue
Chang, Shu-Tong
Chen, Jiann-Heng
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063805
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:137
中文關鍵詞:穿隧式電荷捕捉記憶體電荷捕捉記憶體蕭特基能帳穿隧能帶間量子穿隧穿隧電晶體源極側注入
外文關鍵詞:charge-trapping memorytunneling-based charge-trapping memorysource-side injectionschottky barrier tunneling (SBT)tunnel field-effect transistors (TFETs)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此論文探討應用穿隧元件機制來實現效能之電荷捕捉記憶體元件,這些穿隧機制包括能帶間量子穿隧與蕭特基能障穿隧。研究分析以二維元件模擬進行,探討操作原理與元件電性,著重穿隧行為對電荷捕捉記憶體之電流讀取特性與熱載子注入行為,並深入探索元件尺度微縮考量。其中,並利用暫態寫入分析,探討載子注入捕捉層後的開關讀取與注入寫入特性。首先發展創新的能帶間量子穿隧電荷捕捉記憶體元件,實現穿隧機制之效能電荷捕捉記憶體元件。繼而,與蕭特基能障電荷捕捉記憶體元件比較分析,並探求組合能帶間穿隧與蕭特基穿隧之非對稱蕭特基電荷捕捉記憶體元件的可行架構。
穿隧式電荷捕捉記憶體元件為創新型架構,能帶間穿隧除控制導通開關行為外,穿隧機制亦產生獨特的源極側熱電子注入特性,呈現低功耗與高注入效率表現。當通道長度微縮時,雖短通道效應影響穿隧導通與載子注入,藉由元件設計優化,可持續微縮且保有寫入與讀取特性。以能帶間穿隧或蕭特基穿隧作為元件開關機制,皆具備不同於傳統之源極端熱電子注入行為,蕭特基能障電荷捕捉記憶體元件,亦具備高注入效率表現。但相對而言,由於蕭特基元件導通電流較高,能更快完成熱電子注入寫入動作。至於非對稱或組合架構元件,依其設計參數與結構不同,可發展出與蕭特基元件相似或更效能的電荷捕捉記憶體元件。
This dissertation studies tunneling-based field-effect devices to serve as charge-trapping memory cells for energy-efficient applications, including band-to-band tunneling and Schottky barrier tunneling mechanisms. Using two-dimensional device simulations with appropriate models and parameters, this study explores the design and physics of proposed tunneling-based charge-trapping cells to elucidate their operating characteristics and cell scalability. Iterative programming was utilized to discuss the charge-coupled cells after unique source-side injections. This work first develops the innovative band-to-band tunneling charge-trapping cells, and then examines the Schottky barrier counterparts. Several potential tunneling-based structures were comprehensively investigated to determine proper selections of favorable energy-efficient cells.
For the innovative band-to-band tunneling charge-trapping memory cells, the tunneling determines current transport as well as hot-carriers generation to produce unique source-side injections for low-power operation and high-efficiency injection. It presents excellent cell scalability as device dimensions scaled down. Since both band-to-band tunneling and Schottky barrier tunneling generate particular source-side injections against traditional drift-diffusion cells, Schottky barrier cells also show high-efficiency injections. Relatively, the Schottky barrier devices enable a minimized time for cell programming due to the higher drain current. Other potential architectures, such as asymmetric Schottky barrier cells, can offer similar current and injection performance as those of symmetric Schottky barrier counterparts.
致謝 iii
Abstract iv
摘要 viii
Contents ix
List of Figures xii
List of Tables xxii
Chapter 1 Introduction 1
1.1 Tunneling-Based Energy-Efficient Devices 1
1.2 Charge-Trapping Flash Memories 2
1.3 Schottky Barrier Devices 3
1.4 Source-Side and Drain-Side Injection 4
1.5 Organization 5
Chapter 2 Device Structures and Physical Models in Numerical Simulations 10
2.1 Investigated Cell Structures and Key Parameters 10
2.2 Nonlocal Band-to-Band Tunneling Models 11
2.3 Schottky Barrier Tunneling 13
2.4 Lucky Electrons and Injected Currents 15
2.5 Iteration Methods for Cell Programming 16
Chapter 3 Tunneling Charge-Trapping Memory Cells 25
3.1 Source-Side Injection 25
3.2 Current Characteristics and Injection Efficiency 26
3.3 Bias-Dependent Source-Side Injection 27
3.4 Doping Concentration of Channel and Drain Regions 28
3.5 Thicknesses of Gate Dielectrics 30
3.6 Programming Characteristics 31
Chapter 4 Scaling of Tunneling Charge-Trapping Memory Cells 49
4.1 Effects of Scaling Channel Lengths 49
4.2 Effects of Scaling Drain Lengths 50
4.3 Programming Characteristics of Scaled Cells 52
Chapter 5 Schottky Barrier Charge-Trapping Memory Cells 65
5.1 Conduction Current and Injection Efficiency 65
5.2 Bias-Dependent Source-Side Injection 67
5.3 Schottky Barrier Heights 69
5.4 Programming Characteristics with Varied Schottky Barrier Heights 72
Chapter 6 Scaling of Schottky Barrier Charge-Trapping Memory Cells 96
6.1 Effects of Scaling Channel Lengths 96
6.2 Effects of Scaling Drain Lengths 98
6.3 Programming Characteristics of Scaled Cells 99
Chapter 7 Comparisons of Tunneling-Based Charge-Trapping Memory Cells 112
7.1 M-i-N and P-i-N Structures 112
7.2 M-i-M and M-i-N Structures 114
7.3 Iterative Programming of M-i-M/M-i-N/P-i-N Structures 116
Chapter 8 Conclusions 127
References 131

[1] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Proc. IEEE, vol. 98, pp. 2095–2110, Dec. 2010.
[2] W. Y. Choi, B. Park, J. D. Lee, and T. K. Liu, “Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007.
[3] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, Nov. 2011.
[4] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects and challenges,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 88–95, May 2015.
[5] D. B. Abdi and M. J. Kumar, “Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain,” IEEE J. Electron Devices Soc., vol. 2, no. 6, pp. 187–190, Nov. 2014
[6] A. Pal, A. B. Sachid, H. Gossner, and V. R. Rao, “Insights into the design and optimization of tunnel-FET devices and circuits,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1045–1053, Apr. 2011.
[7] D. H. Morris, U. E. Avci, R. Rios, and I. A. Young, “Design of Low Voltage Tunneling-FET Logic Circuits Considering Asymmetric Conduction Characteristics,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 64, no. 6, pp. 2736-2743, Jun. 2017.
[8] M. Vadizadeh, “Digital Performance Assessment of the Dual-Material Gate GaAs/InAs/Ge Junctionless TFET,” IEEE Trans. Electron Devices, vol. 68, no. 4, pp. 1986-1991, Apr. 2021.
[9] L. Barboni, M. Siniscalchi, and B. Sensale-Rodriguez, “TFET-based circuit design using the transconductance generation efficiency gm/Id method,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 208–216, May 2015.
[10] F. Settino, M. Lanuzza, S. Strangio, F. Crupi, P. Palestri, D. Esseni, and L. Selmi, “Understanding the potential and limitations of tunnel FETs for low-voltage analog/mixed-signal circuits,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2736–2743, Jun. 2017.
[11] W. G. Filho, E. Simoen, R. Rooyackers, C. Claeys, N. Collaert, J. A. Martino and P. G. D. Agopian, “Analog design with Line-TFET device experimental data: from device to circuit level,” Semicond. Sci. Technol., vol. 35, no. 5, 055025, Apr. 2020.
[12] S. Strangio, P. Palestri, D. Esseni, L. Selmi, F. Crupi, Q.-T. Zhao, and S. Mantl, “Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 223–232, May 2015.
[13] A. Gupta, C. K. Chiang, W. Y. Yang, E. R. Hsieh, and S. S. Chung, “Design of Low Voltage Vertical Channel Face-tunneling TFET Using Ge/SiGe Materials and Its SRAM Circuit Performance,” in 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 2020.
[14] Z. Lin, L. Li, X. Wu, C. Peng, W. Lu, and Q. Zhao, “Half-Select Disturb-Free 10T Tunnel FET SRAM Cell with Improved Noise Margin and Low Power Consumption,” IEEE Trans. Circuits Syst. II, vol. 68, no. 7, pp. 2628-2632, Jul. 2021.
[15] M. R. Tripathy, and S. Jit, “Lateral and Vertical Gate Oxide Stacking Impact on Noise Margins and Delays for the 8T SRAM Designed with Source Pocket Engineered GaSb/Si Heterojunction Vertical TFET: A Reliability Study,” IEEE Trans. Device Mater. Rel., vol. 21, no. 3, pp. 372-378, Sep. 2021.
[16] N. Navlakha, J.-T. Lin and A. Kranti, “Retention and Scalability Perspective of Sub-100-nm Double Gate Tunnel FET DRAM,” IEEE Trans. Electron Devices, vol. 64, no. 4, pp. 1561-1567, Apr. 2017.
[17] W. Li, H. Liu, S. Wang, S. Chen and Q. Wang, “The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET,” Nanoscale Research Lett., vol. 12, no. 524, Aug. 2017.
[18] N. Navlakha, M. H. R. Ansari, J.- T. Lin and A. Kranti, “Performance Assessment of TFET Architectures as 1T-DRAM,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, USA, 2018.
[19] N. Kamal, A. K. Kamal and J. Singh, “L-Shaped Tunnel Field-Effect Transistor-Based 1T DRAM with Improved Read Current Ratio, Retention Time, and Sense Margin,” IEEE Trans. Electron Devices, vol. 68, no. 6, pp. 2705-2711, Jun. 2021.
[20] Y. Cao, G. Tian, M. Sandip, J. Bi, K. Xi and B. Li, “Numerical simulation of vertical tunnelling field-effect transistors charge-trapping memory with TCAD tools,” Semicond. Sci. Technol., vol. 36, no. 4, Mar. 2021.
[21] Y.-R. Jhan, Y.-C. Wu, H.-Y. Lin, M.-F. Hung, Y.-H. Chen, and M.-S. Yeh, “High Performance of Fin-Shaped Tunnel Field-Effect Transistor SONOS Nonvolatile Memory with All Programming Mechanisms in Single Device,” IEEE Trans. Electron Devices, vol. 61, no. 7, Jul. 2014.
[22] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proc. of the IEEE, vol. 85, no. 8, Aug. 1997.
[23] D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, no. 6, Aug. 1967.
[24] G. Atwood, “Future directions and challenges for ETox flash memory scaling,” IEEE Trans. Device Mater. Reliab., vol. 4, no. 3, pp. 301-305, Sep. 2004.
[25] K. Ishimaru, “Future of Non-Volatile Memory -From Storage to Computing-,” in International Electron Devices Meeting (IEDM), 2019, pp. 12-17.
[26] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 543-545 Nov. 2000.
[27] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, R. E. Oleksiak, and H. Lawrence, “The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device,” in International Electron Devices Meeting (IEDM), Oct. 1967.
[28] G.-H. Park, and W.-J. Cho, “Reliability of modified tunneling barriers for high performance nonvolatile charge trap flash memory application,” Appl. Phys. Lett., vol. 96, no. 4, Jan. 2010.
[29] A. Goda, “3-D NAND technology achievements and future scaling perspectives,” IEEE Trans. on Electron Devices, vol. 67, no. 4, pp. 1373–1381, Apr. 2020.
[30] A. Goda, “Recent Progress on 3D NAND Flash Technologies,” Electronics, vol. 10, no. 24, Dec. 2021.
[31] X. Zou, L. Jin, D. Jiang, Y. Yu, G. Chen, and Z. Huo, “Investigation of cycling-induced dummy cell disturbance in 3D NAND flash memory,” IEEE Electron Device Lett., vol. 39, no. 2, pp. 188–191, Feb. 2018.
[32] J. Pak, C. Chen, K.-T. Chang, S. Shetty, A. Tu, J. Neo, P. Singh, S. Amato, A. Givant, T. Thurgate, U. Kim, I. Kang, Y. Betser, K. Danon, and Y. Sun, “40nm & 22nm Embedded Charge Trap Flash for Automotive Applications,” in 2018 IEEE International Memory Workshop (IMW), May. 2018.
[33] B. Mao, J. Zhou, S. Wu, H. Jiang, X. Chen, and W. Yang, “Improving Flash Memory Performance and Reliability for Smartphones With I/O Deduplication,” IEEE Trans. Comput. Des. Circuits Syst., vol. 38, np. 6, Jun. 2019.
[34] K. Matsubara, T. Nagasawa, Y. Kaneda, H. Mitani, T. Iwase, Y. Aoki, K. ashimoto, T. Morioka, K. Maekawa, T. Ito, H. Kondo, and T. Kono, “A 2T-MONOS Embedded Flash Macro With 65-nm SOTB Technology chieving 0.15-pJ/bit Read Energy With 80-MHz Access for IoT Applications,” IEEE Solid-State Circuits Lett., vol. 3, pp. 58–61, Mar. 2020.
[35] Md. H. R. Ansari, U. M. Kannan, and N. E.-Atab, “Silicon Nanowire Charge Trapping Memory for Energy-Efficient Neuromorphic Computing,” IEEE Trans. Nanotecnol., vol. 22, pp. 409–416, Jul. 2023.
[36] J. Lee, B.-G. Park, and Y. Kim, “Implementation of Boolean Logic Functions in Charge Trap Flash for In-Memory Computing,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1358–1361, Sep. 2019.
[37] K. Nii, Y. Taniguchi, and K. Okuyama, “A Cost-Effective Embedded Nonvolatile Memory with Scalable LEE Flash®-G2 SONOS for Secure IoT and Computing-in-Memory (CiM) Applications,” in Proc. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2020.
[38] F. Braun, “Ueber die Stromleitung durch Schwefelmetalle,” Ann. Phys., vol. 229, no. 12, pp. 556-563, 1857.
[39] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky Source Drain Metal-Oxide-Semiconductor Field-Effect Transistor on Silicon-on-Insulator Substrate and Demonstration of Sub-50-nm n-type Devices with Metal Gate,” Jpn. J. Appl. Phys., vol. 38, no. 11, pp. 6226-6231, Nov. 1999
[40] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-Type Schottky Barrier Source/Drain MOSFET Using Ytterbium Silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565-567, Aug. 2004.
[41] E. J. Tan, K.-L. Pey, N. Singh, G.-Q. Lo, D. Z. Chi, Y. K. Chin, K. M. Hoe, G. Cui, and P. S. Lee, “Demonstration of Schottky Barrier NMOS Transistors with Erbium Silicided Source/Drain and Silicon Nanowire Channel,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1167-1170, Oct. 2008.
[42] J. Kedzierski, P. Xuan, E.H. Anderson, J. Bokor, T.-J. King, and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” in International Electron Devices Meeting (IEDM), 2000, pp. 57-60.
[43] D. Connelly, C. Faulkner, and D. E. Grupp, “Performance Advantage of Schottky Source/Drain in Ultrathin-Body Silicon-on-Insulator and Dual-Gate CMOS,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1340–1345, May. 2003.
[44] J. M. Larson, and J. P. Snyder, “Overview and Status of Metal S/D Schottky-Barrier MOSFET Technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, May. 2006.
[45] M. Zhang, J. Knoch, Joerg Appenzeller, and S. Mantl, “Improved Carrier Injection in Ultrathin-Body SOI Schottky-Barrier MOSFETs,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 223-225, Mar. 2007.
[46] A. Kinoshita, T. Kinoshita, Y. Nishi, K. Uchida, S. Toriyama, R. Hasumi and J. Koga, “Comprehensive Study on Injection Velocity Enhancement in Dopant-Segregated Schottky MOSFETs,” in International Electron Devices Meeting (IEDM), 2006.
[47] C.-H. Shih and S.-P. Yeh, “Device considerations and design optimizations for dopant segregated Schottky barrier MOSFETs,” Semicond. Sci. Technol., vol. 23, no. 12, pp. 125033-1-125033-10, Dec. 2008.
[48] K. Uchida, K. Matsuzawa, J. Koga, S. Takagi, and A. Toriumi, “Enhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 76, no. 26, pp. 3992–3994, Jun. 2000.
[49] C.-H. Shih and Y.-X. Luo, “Effects of Dopant-Segregated Profiles on Schottky Barrier Charge-Trapping Flash Memories,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1361–1368, May. 2014.
[50] D.-C. Ahn, M.-L. Seol, J. Hur, D.-I. Moon, B.-H. Lee, J.-W. Han, J.-Y. Park, S.-B. Jeon, and Y.-K. Choi, “Ultra-Fast Erase Method of SONOS Flash Memory by Instantaneous Thermal Excitation,” IEEE Electron Device Lett., vol. 37, no. 2, pp. 190–192, Feb. 2016.
[51] P. Bohara and S. K. Vishvakarma, “Self-Amplified Tunneling-Based SONOS Flash Memory Device with Improved Performance,” IEEE Trans. Electron Devices, vol. 65, no. 10, pp. 4297–4303, Oct. 2018.
[52] Synopsys SentaurusTM User’s Manual, Synopsys Inc., Mountain View, CA, 2020.
[53] E. O. Kane, “Theory of Tunneling,” J. Appl. Phys., vol. 32, no. 1, pp. 83–91, 1961.
[54] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of Schottky and ohmic contacts,” IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 103–108, Jan. 2000.
[55] M. Ieong, P. M. Solomon, S. E. Laux, H. P. Wong, and D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model,” in International Electron Devices Meeting (IEDM), 1998, pp. 733–736.
[56] S. Xiong, T. J. King, and J. Bokor, “A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1859–1867, Aug. 2005.
[57] J. M. Andrews and M. P. Lepselter, “Reverse current–voltage characteristics of metal–silicide Schottky diodes,” Solid State Electron., vol. 13, no. 7, pp. 1011–1023, Jul. 1970.
[58] K. Hasnat, C.-F. Yeap, S. Jallepalli, W.-K. Shih, S.A. Hareland, V.M. Agostinelli, A.F. Tasch, and C.M. Maziar, “A Pseudo-Lucky Electron Model for Simulation of Electron Gate Current in Submicron NMOSFET’s,” IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1264–1273, 1996.
[59] C.-H. Shih, J.-T. Liang, J.-S. Wang, and N. D. Chien, “A Source-Side Injection Lucky Electron Model for Schottky Barrier Metal–Oxide–Semiconductor Devices,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1331–1333, Oct. 2011.
[60] C.-H. Shih, and J.-T. Liang, “Nonvolatile Schottky Barrier Multibit Cell With Source-Side Injected Programming and Reverse Drain-Side Hole Erasing,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1774–1780, Aug. 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *