帳號:guest(18.191.140.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李 杰
作者(外文):LEE, CHIEH
論文名稱(中文):CMOS 離子電晶體在高頻率進行DNA感測之探討
論文名稱(外文):CMOS ion sensitive field effect transistors for DNA detection at high frequencies
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):劉承賢
陳致真
口試委員(外文):Liu, Cheng-Hsien
Chen, Chih-chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063568
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:離子感測場效電晶體去氧核醣核酸pH值Debye length效應電雙層效應高頻
外文關鍵詞:ion-sensitive field-effect transistor (ISFET)DNApHDebye length effectdouble layer effecthigh frequency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:620
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
在現今半導體產業的發展,電路設計已經是非常成熟的產業,使得跨領域的研究越發興起,而將電路與微機電系統整合於一片晶片上,可以製作出高感測度的生醫感測晶片就是其中之一,再藉由不同的表面修飾方法,可以感測不同的細胞或生物分子,以利於進行多方面研究及利用。
本論文提出以離子感測場效電晶體(ion-sensitive field-effect transistor)來進行低濃度(fM等級)下即時檢測B型肝炎病毒DNA分子,而在電路設計方面,我們設計了不同的操作頻率,運用高頻操作來進行Debye length 效應探討,並且運用高頻操作下達到能夠在高離子濃度的緩衝溶液下,感測到低濃度的DNA分子。
最後整合讀出電路,量測8×8陣列式感測器,ISFET當電容使用,在pH值感測上,不同設計分別得到56.7 mV/pH、52.8 mV/pH及72.8 mV/pH的感測度。由於DNA帶負電荷,因此當target DNA與表面probe DNA進行雜交反應後,ISFET MOS電容會上升,得到的實驗結果為輸出頻率變化呈現下降趨勢,且高頻設計中在PBS 1X的緩衝溶液下量測,感測target DNA其頻率有3 %的變化。
Nowadays, the development of the semiconductor industry, circuit design is already a very mature industry, making cross-domain research more and more popular; for example, integrating circuits and MEMS into a single chip can produce high-sensitivity biomedical sensors. Different surface modification methods can be used to sense biological cells or biomolecules for various applications.
In this paper, ion-sensitive field-effect transistors (ISFETs) are used to detect hepatitis B virus DNA molecules at low concentration (fM level). We have designed circuits with different operating frequencies in the aim to study the Debye length effect. The high-frequency operation is able to achieve detection of low DNA concentration upon hybridization in buffer solution with high ionic strength.
With the ISFET operated as a MOS capacitor, an 8 × 8 ISFET array demonstrated pH sensitivity of 56.7 mV/pH, 52.8 mV/pH and 72.8 mV/pH, respectively. Since the DNA is negatively charged, the ISFET MOS capacitance increases when the target DNA hybridizes with the surface probe DNA. The experimental results show that the output frequency decreases upon hybridization. One of the designs shows a frequency shift up to 3% when tested in 1X PBS buffer.
致謝 III
摘要 IV
Abstract V
目錄 VI
圖目錄 VIII
表目錄 XIII
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 5
第2章 設計與模擬 7
2-1 ISFET等效電路模型 7
2-2 電路架構 9
2-3 電路模擬 16
第3章 生醫實驗介紹 26
3-1 介紹生物分子 — DNA 26
3-2 表面修飾鍵結步驟 27
第4章 量測結果與分析 31
4-1 量測設備介紹 31
4-2 晶片結構檢視與PCB板封裝 33
4-3 量測結果 34
4-3-1 pH值標準液環境量測 34
4-3-2 PBS緩衝溶液中量測 40
4-3-3 DNA分子感測實驗 46
第5章 結論與未來工作 69
參考文獻 70
附錄 77
[1] P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology," IEEE Trans. Biomed. Circuits and Systems, vol. 19, no. 5, pp. 342–351, 1972.
[2] P. Bergveld, "Thirty years of ISFETOLOGY—what happened in the past 30 years and what may happen in the next 30 years," Sensors and Actuators B: Chemical, vol. 88, pp.1–20, 2003.
[3] S. Purushothaman, C. Toumazou, J. Georgiou, "Towards fast solid state DNA sequencing," IEEE International Symposium on Circuits and Systems (ISCAS), pp.169–172, 2002.
[4] S. Purushothaman, C. Toumazou, C. Ou, "Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor," Sensors and Actuators B: Chemical, vol. 114, pp. 964–968, 2006.
[5] L. C. Yen, M. T. Tang, C. Y. Tan, T. M. Pan, and T. S. Chao, "Effect of sensing film thickness on sensing characteristics of dual-gate poly-si ion-sensitive field-effect-transistors," IEEE Electron Device Letters, vol. 35, no. 12, pp. 1302–1304, 2014.
[6] K. Park, H. J. Jang, J. T. Park, and W. J. Cho, "SOI dual-gate ISFET with variable oxide capacitance and channel thickness," Solid-State Electronics, vol. 97, pp. 2–7, 2014.
[7] Y. J. Huang, C. C. Lin, J. C. Huang, C. H. Hsieh, C. H. Wen, T. T. Chen, L. S. Jeng, C. K. Yang, J. H. Yang, F. Tsui, Y. S. Liu, S. Liu, and M. Chen, "High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC," IEEE International Electron Devices Meeting, pp. 747-750, 2015.
[8] F. Patolsky, B. P. Timko, G. F. Zheng, and C. M. Lieber, "Nanowirebased nanoelectronic devices in the life sciences," MRS Bull, vol. 32, pp. 142–149, 2007.
[9] F. Patolsky, G. Zheng, and C. M. Lieber, "Nanowire sensors for medicine and the life sciences,"Nanomedicine, vol. 1, pp. 51–65, 2006.
[10] F. Patolsky, G. F. Zheng, and C.M. Lieber, "Nanowire-based biosensors," Anal. Chem., vol. 78, pp. 4260–4269, 2006.
[11] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markerswith nanowire sensor arrays," Nature Biotechnol., vol. 23, pp. 1294–1301, 2005.
[12] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, "Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices," Nano Letters, vol. 4, no. 10, pp. 1919-1924, 2004.
[13] T. Rim, K. Kim, S. Kim, C. K. Baek, and M. Meyyappan, "Improved electrical characteristics of honeycomb nanowire ISFETs," IEEE Electron Device Letters, vol. 34, no. 8, pp. 1059-1061, 2013.
[14] K. Kim, C. Park, T. Rim, M. Meyyappan, and J. S. Lee, "Electrical and pH sensing characteristics of Si nanowire-based suspended FET biosensors," IEEE International Conference on Nanotechnology, pp. 768-771, 2014.
[15] A. A. Ahdal, and C. Toumazou, "ISFET-based chemical switch," IEEE Sensor Journal, vol. 12, no. 5, pp. 1140-1146, 2012.
[16] M. S. Norzin, A. A. Hamzah, F. W. Yunus, J. Yunas, and B. Y. Majlis, "pH sensing characteristics of silicon nitride as sensing membrane based ISFET sensor for artificial kidney," IEEE International Conference on Semiconductor Electronics, pp. 124-127, 2018.
[17] S. Sinha, R. Rathore, S. K. Sinha, R. Sharma, R. Mukhiya, and V. K. Khanna, "Modeling and simulation of ISFET microsensor," ISSS International Conference on Smart Materials, pp. 14-27, 2014.
[18] J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell, and D. R. Allee, "Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer," IEEE Sensors Journal, vol. 14, no. 4, pp. 937-938, 2013.
[19] B. Baur, J. Howgate, H. G. von Ribbeck, Y. Gawlina, V. Bandalo, G. Steinhoff, M. Stutzmann, and M. Eickhoff, “Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors,” Appl. Phys. Lett., vol. 89, pp. 183901–183903, 2006.
[20] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, M. Eickhoff, "pH response of GaN surfaces and its application for pH-sensitive field-effect transistor," Appl. Phys. Lett, vol. 83, pp. 177–179, 2003.
[21] J. T. Mabeck, G. G. Malliaras, "Chemical and biological sensors based on organic thin-film transistors," Anal. Bioanal. Chem, vol. 384, pp. 343–353, 2006.
[22] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator," J. Appl. Phys, vol. 96, pp. 6431–6438, 2004.
[23] J. A. Garrido, A. Hartl, S. Kuch, M. Stutzmann, O. A. Williams, R. B. Jackmann, "pH sensors based on hydrogenated diamond surfaces," Appl. Phys. Lett, vol 86, pp. 073504-1–073504-3, 2005.
[24] K. S. Song, M. Degawa, Y. Nakamura, H. Kanazawa, H. Umezawa, H. Kawarada, "Surface-modified diamond field-effect transistors for enzyme-immobilized biosensors," Jpn. J. Appl. Phys, vol. 43, pp. 814–817, 2004.
[25] R. A. Street, "Hydrogenated amorphous silicon," CambridgeSolid State Science Series. Cambridge University Press, 1991.
[26] D. Goncalves, D. Prazeres, V. Chu, J. Conde, "Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors," Biosens. Bioelectron, vol. 24, pp. 545–551, 2008.
[27] D. Garner, H. Bai, P. Georgiou, T. Constandinou, S. Reed, L. Shepherd, W. Wong, K. Lim, C. "Toumazou, A multichannel DNA SoC for rapid point-ofcare gene detection, " IEEE Conference on Solid-State Circuits, pp. 492–493, 2010.
[28] M. J. Schoning, A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, vol. 127, pp. 1137-1151, 2002.
[29] M. Yuqing, G. Jianguo, C. Jianrong, "Ion sensitive field effect transducer-based biosensors," Biotechol. Adv, vol. 21, pp. 527-534, 2003.
[30] Y. Ito, "Long-term drift mechanism of Ta2O5 gate pH-ISFETs," Sens. Actuators, B, vol. 64, pp. 152-155, 2000.
[31] S. V. Dzyadevich, Y. I. Korpan, V. N. Arkhipova, M. Y. Alesina, C. Martelet, A. V. El’Skaya, A. P. Soleatkin, "Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum," Biosens. Bioelectron, vol. 14, pp. 283-287, 1999.
[32] M. Hara, Y. Yasuda, H. Toyotama, H. Ohkawa, T. Nozawa, J. Miyake, "A novel ISFET-type biosensor based on P450 monooxygenases," Biosens. Bioelectron, vol. 17, pp. 173-179, 2002.
[33] Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid e. coli screening," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 2, pp. 402-415, 2018.
[34] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, "A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis," IEEE Transactions on Biomedical Engineering, vol. 62, no. 9, pp. 2224-2233, 2015.
[35] S. M. Peter, M. K. James, P. B. Dhanusha, and H. Mathew, "Dual mode CMOS ISFET sensor for DNA sequencing," International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 307-309, 2017.
[36] C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, "Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA," Biosensors and Bioelectronics, vol. 24, pp. 3019-3024, 2009.
[37] P. W. Yen, C. W. Huang, Y. J. Huang, M. C. Chen, H. H. Liao, S. S. Lu, and C. T. Lin, "A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples," Biosensors and Bioelectronics, vol. 61, pp. 112-118, 2014.
[38] G. Xu, J. Abbott, and D. Ham, "Optimization of CMOS-ISFET-based biomolecular sensing: analysis and demonstration in DNA detection," IEEE Trans. Elec. Dev., vol. 63, no. 8, pp. 3249–3256, 2016.
[39] F. Uslu, S. Ingebrandt, D. Mayer, S. Böcker-Meffert, M. Odenthal, and A. Offenhäusser, "Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device," Biosens. Bioelectron., vol. 19, pp. 1723–1731, 2004.
[40] M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, Imrich Barák, "Fully electronic DNA hybridization detection by a standard CMOS biochip," Sens. Actuators B (Chem.), vol. 118, pp. 41–46, 2006.
[41] T. Uno, H. Tabata and T. Kawai, "Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization," Anal. Chem., vol. 79, pp. 52–59, 2007.
[42] Q. Zhang and V. Subramanian, "DNA hybridization detection with organic thin film transistors: toward fast and disposable DNA microarray chips," Biosens. Bioelectron., vol. 22, pp. 3182–3187, 2007
[43] T. Sakata and Y. Miyahara, "Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor," Biosens. Bioelectron., vol. 22, pp. 1311–1316, 2007.
[44] Y. Maruyama, S. Terao, and K. Sawada, "Label free CMOS DNA image sensor based on the charge transfer technique," Biosens. Bioelectron., vol. 24, pp. 3108–3112, 2009
[45] J. Go, P. R. Nair, B. Reddy Jr., B. Dorvel, R. Bashir, and M. A. Alam, "Beating the Nernst limit of 59 mV/pH with double-gated nano-scale field-effect transistors and its applications to ultra-sensitive DNA biosensors," IEEE Int. Elec. Dev. Meeting (IEDM), pp. 202–205, 2010.
[46] K. Lee, J. O. Lee, S. Choi, J. Yoon, and G. Cho, "A CMOS label-free DNA sensor using electrostatic induction of molecular charges," Biosens. Bioelectron., vol. 31, pp. 343–348, 2012.
[47] G. S. Kulkarni and Z. Zhong, "Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor," Nano Letters, vol. 12, pp. 719–723, 2012.
[48] C. Heitzinger and G. Klimeck, "Computational aspects of the threedimensional feature-scale simulation of silicon-nanowire field-effect sensor for DNA detection," J. Comput. Electron., vol. 6, pp. 387–390, 2007.
[49] Y. L. Bunimovich, Y. S. Shin, W. S. Yeo, M. Amori, G. Kwong and J. R. Heath, "Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution," J. Amer. Chem. Soc., vol. 128, pp. 16323–16331, 2006.
[50] Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa and Y. Ebara, "Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance," Anal. Chem., vol. 70, pp. 1288-1296, 1988.
[51] I. Sarangadharana, A. Regmia, Y. W. Chen, C. P. Hsu, P. Chen, W. H. Chang, Lee G. Y., Chyi J. I., Shiesh S. C., Lee G. B. and Wang Y. L., "High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) biosensors," Biosens. Bioelectrnics, vol. 100, pp. 282-289, 2018.
[52] Y. L. Bunimovich, Y. S. Shin, W. S. Yeo, M. Amori, G. Kwong, and J. R. Heath, "Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution," J. Amer. Chem. Soc., vol. 128, pp. 16323–16331, 2006.
[53] L.J. Stains, Kricka, "labels and detection strategies for nucleic acids assays," Ann. Clin. Biochem., vol. 39, pp. 114–129, 2002
[54] A. J. Bard and L. R. Faulkner, "Electrochemical Methods," New York, Wiley, 2001.
[55] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay1, L. Selmi, M. A. Jongsma and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nature nanotechnology, vol. 10, pp.791-795,2 015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *