帳號:guest(3.147.48.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何聖傑
作者(外文):Ho, Sheng-Chieh
論文名稱(中文):以氧化製程改善600V橫向 4H-碳化矽高壓元件
論文名稱(外文):Improvement of 600V Lateral 4H-SiC High-voltage Devices by Oxidation Process
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):李坤彥
黃宗義
口試委員(外文):Lee, Kung-Yen
Huang, Tsung-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063563
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:碳化矽氧化製程場平板
外文關鍵詞:SiCRESURFNO annealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:509
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要希望發展出600V之4H-橫向型碳化矽高壓元件與隔離以供未來的BCD (Bipolar-CMOS-LDMOS)製程平台來使用,通過改善氧化製程來增強元件的性能,預期能做出比矽材料更低的特徵導通電阻且耐壓600V以上的橫向型高壓元件。
論文中使用RESURF結構及場平板設計橫向高壓元件,採用氧化後一氧化氮熱退火方式改善N型橫向擴散金氧半場效電晶體反轉通道,通道電子遷移率從6.54 cm^2/V∙s 提升至41.05〖 cm〗^2/V∙s,通過增加場氧化層的厚度改善表面電場分布,提升崩潰電壓。根據實驗結果,在漂移區長度為14μm下量測到的最佳LDMOS特徵導通電阻(Vg=30V)及崩潰電壓為252 mΩ*cm2、680V,而橫向PiN為9.27 mΩ*cm2、770V,同時利用電漿蝕刻以及P+溝槽離子佈植實現深溝槽隔離,達到隔離600V以上的效果。
This thesis mainly focuses on the development of 600V lateral 4H-SiC high-voltage devices and isolation to provide a BCD (Bipolar-CMOS-LDMOS) process platform for use in the future. The performance of these devices was improved by adjusting the oxidation process. It is expected to demonstrate lateral high-voltage devices with lower Ron,sp than those of silicon counterparts with a breakdown voltage of more than 600V.
In this thesis, RESURF structure and field plate are used in the design of lateral high-voltage devices. NO annealing has been used to improve the inversion channel for n-type LDMOS transistors. The electron channel mobility is increased from 6.54cm^2/V∙s to 41.05cm^2/V∙s. By increasing the thickness of the field oxide layer, the surface electric field profile is improved to increase the breakdown voltage. From the experiment results, the best Ron,sp (Vg=30V)and breakdown voltage of LDMOS are 252 mΩ*cm2 and 680V, while those of lateral PiN are 9.27 mΩ*cm2 and 770V with a drift region length of 14μm. In the meantime, plasma etching and P+ trench implantation are used to realize deep trench isolation capable of more than 600V isolation.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 序論 1
1.1 寬能矽材料 4H-碳化矽 (4H-SiC) 1
1.2 碳化矽晶格結構 2
1.3 BCD製程及功率元件簡介 3
1.4 文獻回顧 4
1.5 研究動機與論文大綱 5
第二章 元件原理、設計與模擬 6
2.1 RESURF (Reduced Surface Field)原理 6
2.2 場平板 (Field Plate)結構 7
2.3 離子佈植技術 7
2.3.1 P型離子佈植 8
2.3.2 N型離子佈植 9
2.3.3 佈植後退火 10
2.4 碳化矽氧化層 10
2.4.1 乾氧製程 11
2.4.2 乾氧製程與NO熱退火 11
2.5 元件崩潰機制 12
2.5.1 累增崩潰 12
2.5.2 氧化層崩潰 13
2.6 元件設計與模擬 13
第三章 實驗製程 17
3.1 PiN元件製程 17
3.1.1 一般清潔(Normal Clean) 18
3.1.2 黃光微影製程(Lithography) 18
3.1.3 定義對準鍵(Define Alignment Key) 19
3.1.4 P阱離子佈植(P-well Implantation) 20
3.1.5 陽極P+離子佈植(Anode P+ Implantation) 21
3.1.6 陰極N+離子佈植(Cathode N+ Implantation) 21
3.1.7 蝕刻溝槽 (Trench Etch) 22
3.1.8 P+溝槽離子佈植(P+ Trench Implantation) 23
3.1.9 電性活化(Activation) 24
3.1.10 場氧化層(Field Oxide) 24
3.1.11 陽極歐姆接觸(Anode Ohmic Contact) 25
3.1.12 陰極歐姆接觸(Cathode Ohmic Contact) 26
3.1.13 快速熱退火(RTA) 26
3.1.14 墊金屬(Pad Metal) 26
3.2 LDMOS元件製程 28
3.2.1 閘極電極定義(Gate Electrode Definition) 29
第四章 實驗量測分析與探討 31
4.1 測試元件 31
4.1.1 歐姆接觸量測 31
4.1.2 NMOS電容 34
4.1.3 水平型NMOS 36
4.1.4 深溝槽隔離(DTI) Test Key 38
4.2 橫向型元件 40
4.2.1 順向量測 40
4.2.2 反向崩潰量測 44
4.3 文獻比較 46
第五章 結論與未來展望 48
參考文獻 49
[1] C. M. Zetterling, Process Technology for Silicon Carbide Device, EMIS processing series IEEE, 2002.
[2] A. Powell and L. Rowland, "SiC materials-progress, status, and potential roadblocks," IEEE, vol. 90, no. 6, pp. 942 - 955, June 2002.
[3] J. Appels and H. Vaes, "High voltage thin layer devices (RESURF devices)," in IEEE Electron Devices Meeting, Washington, DC, USA, 1979.
[4] K. Chatty, S. Banerjee, T. P. Chow. and R. J. Gutmann, "High-voltage lateral RESURF MOSFETs on 4H-SiC," IEEE Electron Device Lett., vol. 21, no. 7, pp. 356 - 358, July 2000.
[5] T. Kimoto, H. Kawano and J. Suda, "1330 V, 67 mΩ·cm2 4H-SiC(0001) RESURF MOSFET," IEEE Electron Device Lett., vol. 26, no. 9, pp. 649-651, October 2005.
[6] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, "Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs," Materials science Forum., Vols. 527-529, pp. 1305-1308, October 2006.
[7] M. Noborio, J. Suda and T. Kimoto, "4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose," in 2008 20th International Symposium on Power Semiconductor Devices and IC's, Orlando, FL, USA, 2008.
[8] H. F. Li, S. Dimitrijev, H. B. Harrison and D. Sweatman, "Interfacial characteristics of N2O and NO nitride SiO2 grown on SiC by rapid thermal processing," Applied Physics Letters, vol. 70, no. 15, pp. 2028-2030, April 1997.
[9] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das and J. W. Palmour, "Improve Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide," IEEE Electron Device Letter, vol. 22, no. 4, pp. 176-178, April 2001.
[10] M. Imam, M. Quddus, J. Adams and Z. Hossain, "Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices," vol. 51, no. 1, pp. 141-148, January 2004.
[11] B. Balig, Fundamentals of Power Semiconductor Devices, 2008.
[12] T. Kimoto, K. Kawahara, H. F. N. Kaji and J. Suda, "Ion Implantation Technology in SiC for High-Voltage/High-Temperature Device," in 2016 16th International Workshop on Junction Technology (IWJT), Shanghai, 2016.
[13] Y. Song, S. Dhar, L. C. Feldman, G. Chung and J. R. Williams, "Modified Deal Grove model for the thermal oxidation of silicon carbide," Journal of Applied Physics, vol. 95, no. 9, pp. 4953-4957, May 2004.
[14] V. Simonka, A. Hossinger, J. Weinbub and S. Selberherr, "Growth rates of dry thermal oxidation of 4H‐silicon carbide," Journal of Applied Physics, vol. 120, no. 13, pp. 135705-1-135705-8, September 2016.
[15] Y. Nanen, M. Kato, J. Suda and T. Kimoto, "Effects of Nitridation on 4H-SiC MOSFETs Fabricated on Various Crystal Faces," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1260 - 1262, March 2013.
[16] T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T.Shimura, M. Takei and H. Watanabe, "Ultrahigh-temperature rapid thermal oxidation of 4H-SiC(0001) surfaces and oxidation temperature dependence of SiO2/ SiC interface properties," in 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, 2016.
[17] M. Qiao, H.J.Wang, M. W. .Duan, J. Fang, B. Zhang and Z. J. Li, "Realization of an 850V High Voltage Half Bridge GateDrive IC with a New NFFP HVI Structure," JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, vol. 5, no. 4, pp. 328-331, December 2007.
[18] Y. Negoro, K. Katsμmoto, T. Kimoto and H. Matsunami, "Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001)," Journal of Applied Physics, vol. 96, no. 1, pp. 224-228, June 2004.
[19] F. J. Yang, J. Gong, R. Y. Su, C. L. Tsai, H. C. Tuan and C. F. Huang, "RESURF p-n Diode With a Buried Layer, a Comprehensive Study," IEEE Transactions on Electron Devices, vol. 60, no. 11, pp. 3835 - 3841, October 2013.
[20] Sridhar, Huang and Baliga, "Dielectrically isolated lateral high voltage P-i-N rectifiers for power ICs," in 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992.
[21] S. Cheng, D. Fang, M. Qiao, S. Zhang, G. Zhang, Y. Gu, Y. He, X. Zhou, Z. Qi, Z. Li and B.Zhang, "A novel 700V deep trench isolated double RESURF LDMOS with P-sink layer," in 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 2017.
[22] S. Lee, C. K. Jeon, J. Moon and Y. Choi, "700 V lateral DMOS with new source fingertip design," in 20th ISPSD, Orlando, FL, USA, 2008.
[23] M. Qiao, L. L. Jiang, B. Zhang and Z. J. Li, "A 700 V BCD technology platform for high voltage applications," Journal of Semiconductors, vol. 33, no. 4, pp. 044004-1-044004-4, April 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *