帳號:guest(18.190.253.68)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何怡瑩
作者(外文):Ho, I-Ying
論文名稱(中文):具銦鈍化層的硒化銦電晶體之動態缺陷強化電滯迴圈效應在記憶體應用的研究
論文名稱(外文):Dynamic-trap enhanced hysteresis loops for memory applications using Indium passivated InSe FETs
指導教授(中文):連振炘
指導教授(外文):Lien, Chen-Hsin
口試委員(中文):施君興
林彥甫
口試委員(外文):Shih, Chun-Hsin
Lin, Yen-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063548
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:二維材料硒化銦非揮發性記憶體接觸電阻遲滯現象
外文關鍵詞:Two-dimensional materialsIndium SeleniumNon-volatile memorycontact resistanceHysteresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:671
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著半導體技術蓬勃發展,電子產品尺寸日漸縮小,效能卻能增加,這全都有賴於「摩爾定律」。然而,在傳統半導體架構中,元件的微縮已將近物理極限,眼看摩爾定律的發展遇到瓶頸,因此,許多科學家致力於研發新的方法,其中,二維材料就是一個強而有力的候選之一,他擁有次奈米等級的厚度,以及獨特的電性、光學特性,使得二維材料成為運用於次世代電晶體的理想材料,可直接與矽競爭。
本論文主要藉由沉積銦(In)當摻雜層的層狀硒化銦(InSe)場效應晶體(FET)使得電子遷移率在室溫下可高達3700〖cm〗^2 V^(-1) s^(-1),並且在一個月後還能夠保有60%的電子遷移率。此外,由於沉積銦在硒化銦和金電極中間,也改善了接觸電阻,這和低頻雜訊分析結果一致。然而,由於InSe對於氧的反應非常敏感,將元件放在大氣下,並且給定閘極電壓,InSe的表面產生氧化層,而氧化層與InSe之間存在缺陷使得載子被捕捉,造成電滯現象,基於此電滯現象,我們將它運用做為非揮發性記憶體,不像傳統非揮發性記憶體需要繁雜的氧化層製程,就能達到相同的記憶體特性。沉積銦當摻雜層的層狀硒化銦場效應晶體展現了高電子遷移率、高電流開關比、相當大的遲滯窗口、穩定的儲存時間,提供了一個可靠的方法使用二維材料做成記憶體元件。
With the rapid development of semiconductor technology, the size of electronic products scale down but efficiency can be increased, all of which depend on "Moore's Law." However, in the traditional semiconductor architecture, the shrinkage of devices has approached the physical limit, and the development of Moore's Law has encountered bottlenecks. Therefore, many scientists are working on developing new path. Among them, two-diementional materials is one of the strong candidates. They have sub-nano-grade thickness, as well as unique electrical and optical properties, making two-dimensional materials an ideal material for the next generation of transistors, which can compete directly with silicon.
A layered indium selenide (InSe) field‐effect transistor (FET) with superior controlled stability is demonstrated by depositing an indium (In) doping layer. The electron mobility can be as high as 3700〖cm〗^2 V^(-1) s^(-1) at room temperature, and can be retained with 60% after one month. In addition, since the deposited indium is between the indium selenide and Au electrodes, the contact resistance is also improved, which is consistent with the low frequency noise analysis result. However, since InSe is very sensitive to oxygen, when the device is placed under air, then given the gate voltage, the surface of the InSe and the doped indium structure become InO_x, causing an oxide layer on the surface. There are defects on the interface of the oxide layer and InSe, which cause the carrier be captured, resulting in hysteresis. Based on the hysteresis, we use it as a non-volatile memory. Unlike traditional non-volatile memory, which requires a complicated oxide layer process, but the same memory characteristics can be achieved. A layered indium selenide field effect transistor by depositing an indium doping layer exhibits high electron mobility, 〖10〗^5 on/off ratio, large hysteresis window, stable retention, and provides a reliable path to utilize two-dimensional materials to memory device.
致謝詞 I
摘要 II
ABSTRACT III
目次 V
圖目次 VII
表目次 X
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文大綱 3
第二章 文獻回顧 4
2.1 二維材料 (TWO-DIMENSIONAL MATERIALS) 4
2.1.1 硒化銦(InSe) 5
2.2 二維材料電晶體 7
2.2.1 硒化銦電晶體(InSe FET) 8
2.2.2 二維材料元件接觸探討 9
2.2.3 The Y Function Method (YFM) 10
2.3 二維材料應用於記憶體 12
2.4 材料物性分析 16
2.4.1 掃描式電子顯微鏡(Scanning Electron Microscopy) 16
2.4.2 低頻雜訊(Low Frequency Noise, LFN) 17
2.4.2.1 熱雜訊(Thermal Noise) 18
2.4.2.2 散粒雜訊(Shot Noise) 19
2.4.2.3 生成與複合雜訊(generation-recombination noise, g-r noise) 20
2.4.2.4 閃爍雜訊(Flicker Noise) 21
2.4.3 穿透式電子顯微鏡(Transmission electron microscope) 27
第三章 元件製程與分析 28
3.1 元件製程 28
3.2 量測設備 29
3.3 元件特性與分析 31
3.3.1 硒化銦電晶體表面鍍銦對元件特性之影響 31
3.3.2 不同氣體氛圍環境對元件特性之影響 35
3.3.3 低頻雜訊分析 38
3.3.4 掃描式電子顯微鏡分析 42
3.3.5 穿透式電子顯微鏡分析 43
第四章 硒化銦場效電晶體應用於記憶體 46
4.1 硒化銦記憶體之基本電性 46
4.2 硒化銦記憶體特性分析 48
4.2.1 脈衝(Pulse)量測 49
4.2.2 耐久性(Endurance)量測 50
4.2.3 儲存時間(Retention time)量測 51
4.2.4 記憶體操作速度量測 52
4.2.5 硒化銦記憶體元件之邏輯電路應用 53
第五章 總結 55
5.1 結論 55
5.2 未來展望 56
參考文獻 57

[1] Wikipedia, "Moore's Law," from https://en.wikipedia.org/wiki/Moore%27s_law, 2011.
[2] K. Uchida and S.-i. Takagi, "Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors," Applied Physics Letters, vol. 82, no. 17, pp. 2916-2918, 2003.
[3] S. Thiele, W. Kinberger, R. Granzner, G. Fiori, and F. Schwierz, "The prospects of transition metal dichalcogenides for ultimately scaled CMOS," Solid-State Electronics, vol. 143, pp. 2-9, 2018.
[4] A. Dmitriev, V. Vishnjak, G. Lashkarev, V. Karbovskyi, Z. Kovaljuk, and A. Bahtinov, "Investigation of the morphology of the van der Waals surface of the InSe single crystal," Physics of the Solid State, vol. 53, no. 3, pp. 622-633, 2011.
[5] D. A. Bandurin et al., "High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe," Nature nanotechnology, vol. 12, no. 3, p. 223, 2017.
[6] C. Sun, H. Xiang, B. Xu, Y. Xia, J. Yin, and Z. Liu, "Ab initio study of carrier mobility of few-layer InSe," Applied Physics Express, vol. 9, no. 3, p. 035203, 2016.
[7] P.-H. Ho et al., "High-mobility InSe transistors: the role of surface oxides," Acs Nano, vol. 11, no. 7, pp. 7362-7370, 2017.
[8] S.-L. Li et al., "Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors," Nano letters, vol. 13, no. 8, pp. 3546-3552, 2013.
[9] X. Wang, J. B. Xu, C. Wang, J. Du, and W. Xie, "High‐Performance Graphene Devices on SiO2/Si Substrate Modified by Highly Ordered Self‐Assembled Monolayers," Advanced Materials, vol. 23, no. 21, pp. 2464-2468, 2011.
[10] S. Ghatak, A. N. Pal, and A. Ghosh, "Nature of electronic states in atomically thin MoS2 field-effect transistors," Acs Nano, vol. 5, no. 10, pp. 7707-7712, 2011.
[11] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, "Single-layer MoS 2 transistors," Nature nanotechnology, vol. 6, no. 3, p. 147, 2011.
[12] M. Li et al., "High Mobilities in Layered InSe Transistors with Indium‐Encapsulation‐Induced Surface Charge Doping," Advanced Materials, vol. 30, no. 44, p. 1803690, 2018.
[13] H. Jin, J. Li, L. Wan, Y. Dai, Y. Wei, and H. Guo, "Ohmic contact in monolayer InSe-metal interface," 2D Materials, vol. 4, no. 2, p. 025116, 2017.
[14] G. Ghibaudo, “New Method for The Extraction of MOSFET Parameters,” Electronics Letters, vol.24, no. 9, pp. 543-545, 1988.
[15] Y. Xu, T. Minari, K. Tsukagoshi, J. Chroboczek, and G. Ghibaudo, "Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors," Journal of Applied Physics, vol. 107, no. 11, p. 114507, 2010.
[16] H.-L. Tang et al., "Multilayer graphene–WSe2 heterostructures for WSe2 transistors," ACS nano, vol. 11, no. 12, pp. 12817-12823, 2017.
[17] S. Bertolazzi, D. Krasnozhon, and A. Kis, "Nonvolatile memory cells based on MoS2/graphene heterostructures," ACS nano, vol. 7, no. 4, pp. 3246-3252, 2013.
[18] M. S. Choi et al., "Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices," Nature communications, vol. 4, p. 1624, 2013.
[19] D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, and Z. Zhang, "Nonvolatile floating‐gate memories based on stacked black phosphorus–boron nitride–MoS2 heterostructures," Advanced Functional Materials, vol. 25, no. 47, pp. 7360-7365, 2015.
[20] E. Zhang et al., "Tunable charge-trap memory based on few-layer MoS2," ACS nano, vol. 9, no. 1, pp. 612-619, 2014.
[21] Q. Feng, F. Yan, W. Luo, and K. Wang, "Charge trap memory based on few-layer black phosphorus," Nanoscale, vol. 8, no. 5, pp. 2686-2692, 2016.
[22] J. B. Johnson, "Thermal agitation of electricity in conductors," Physical review, vol. 32, no. 1, p. 97, 1928.
[23] H. Nyquist, "Thermal agitation of electric charge in conductors," Physical review, vol. 32, no. 1, p. 110, 1928.
[24] Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. 2007, Springer Science & Business Media.
[25] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE journal of solid-state circuits, vol. 33, no. 2, pp. 179-194, 1998.
[26] K. H. Lundberg, "Noise sources in bulk CMOS," Unpublished paper, vol. 3, p. 28, 2002.
[27] D. Rigaud, M. Valenza, and J. Rhayem, "Low frequency noise in thin film transistors," IEE Proceedings-Circuits, Devices and Systems, vol. 149, no. 1, pp. 75-82, 2002.
[28] R. Hettiarachchi, T. Matsuki, W. Feng, K. Yamada, and K. Ohmori, "Behavior of Low-Frequency Noise in n-Channel Metal–Oxide–Semiconductor Field-Effect Transistors for Different Impurity Concentrations," Japanese Journal of Applied Physics, vol. 50, no. 10S, p. 10PB04, 2011.
[29] N. Arpatzanis, A. Tsormpatzoglou, C. Dimitriadis, K. Zekentes, N. Camara, and M. Godlewski, "Electrical and low frequency noise properties of 4H‐SiC p+–n–n+ junction diodes," physica status solidi (a), vol. 203, no. 10, pp. 2551-2557, 2006.
[30] Yamamoto, Y., Technological Innovation of Thin-Film Transistors: Technology Development, History,and Future, in Japanese Journal of Applied Physics. 2012.
[31] Franklin, A.D., DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications, in Science. 2015. p. aab2750.
[32] S. Christensson, I. Lundström, and C. Svensson, "Low frequency noise in MOS transistors—I theory," Solid-State Electronics, vol. 11, no. 9, pp. 797-812, 1968.
[33] P. Dutta and P. Horn, "Low-frequency fluctuations in solids: 1 f noise," Reviews of Modern physics, vol. 53, no. 3, p. 497, 1981.
[34] Tickle, A.C., Thin-film transistors: a new approach to microelectronics. 1969, John Wiley & Sons.
[35] M. Agu, "1/f fluctuations in diffusion processes of effective space dimension less than one," Journal of Applied Physics, vol. 54, no. 3, pp. 1190-1192, 1983.
[36] G. Ghibaudo, O. Roux, and J. Brini, "Modeling of contuctance fluctuations in small area metal–oxide–semiconductor transistors," physica status solidi (a), vol. 127, no. 1, pp. 281-294, 1991.
[37] Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. 2007, Springer Science & Business Media.
[38] F. Hooge, "1/f noise," Physica B+ C, vol. 83, no. 1, pp. 14-23, 1976.
[39] Hooge, F., et al., Lattice scattering causes 1/ƒ noise, in Physics Letters A. 1978. p. 315-316.
[40] I. Hafez, G. Ghibaudo, and F. Balestra, "A study of flicker noise in MOS transistors operated at room and liquid helium temperatures," Solid-state electronics, vol. 33, no. 12, pp. 1525-1529, 1990.
[41] G. Ghibaudo, O. Roux, C. Nguyen‐Duc, F. Balestra, and J. Brini, "Improved analysis of low frequency noise in field‐effect MOS transistors," physica status solidi (a), vol. 124, no. 2, pp. 571-581, 1991.
[42] T.-C. Fung, G. Baek, and J. Kanicki, "Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors," Journal of Applied Physics, vol. 108, no. 7, p. 074518, 2010.
[43] C. H. Ho and Y. J. Chu, "Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals," Advanced Optical Materials, vol. 3, no. 12, pp. 1750-1758, 2015.
[44] M. Chen, H. Nam, S. Wi, G. Priessnitz, I. M. Gunawan, and X. Liang, "Multibit data storage states formed in plasma-treated MoS2 transistors," Acs Nano, vol. 8, no. 4, pp. 4023-4032, 2014.
[45] A. T. Neal, R. Pachter, and S. Mou, "P-type conduction in two-dimensional MoS2 via oxygen incorporation," Applied Physics Letters, vol. 110, no. 19, p. 193103, 2017.
[46] T. Nishi, K. Kanai, Y. Ouchi, M. R. Willis, and K. Seki, "Oxygen effects on the interfacial electronic structure of titanyl phthalocyanine film: p-Type doping, band bending and Fermi level alignment," Chemical physics, vol. 325, no. 1, pp. 121-128, 2006.F
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *