帳號:guest(3.128.201.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳盈孜
作者(外文):Chen, Ying-Tzu
論文名稱(中文):像素960×540顯示應用之磷化鋁鎵銦系列微型發光二極體研製與特性分析
論文名稱(外文):Fabrication and Performance Analysis of AlGaInP-Based Micro-LED array for 960×540 Pixel Display Applications
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-chyi
口試委員(中文):李世昌
羅俊傑
吳忠幟
口試委員(外文):Lee, shih-chang
Luo, chun-chieh
Wu, chung-chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063544
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:68
中文關鍵詞:磷化鋁鎵銦微型發光二極體覆晶接合微型顯示器
外文關鍵詞:AlGaInPMicro-LEDFlip-chipbondingdisplay
相關次數:
  • 推薦推薦:0
  • 點閱點閱:240
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文為像素960×540顯示應用之磷化鋁鎵銦系列微型發光二極體研製與特性分析,主要分為兩大部分-特性分析及覆晶接合。首先先在砷化鎵基板上成長磷化鋁鎵銦之磊晶層,由於砷化鎵基板的吸光效應,我們將利用晶圓接合的方式將磊晶層轉移至藍寶石基板(Sapphire),接著利用濕蝕刻的方式將砷化鎵基板去除。接著利用感應耦合電漿離子蝕刻系統(ICP-RIE)定義出高原平台(Mesa),為了讓電流均勻分布我們使用了網格電極的設計,之後再使用快速熱退火(RTA)形成歐姆接觸。為了降低元件的漏電流及後續的製程,我們利用電將輔助化學氣相沉積系統(PECVD)沉積介電質,最後在高原平台上沉積銦球(indium bump)以跟副載置片(submount)做接合。
第一部分我們製作了不同尺寸的微型發光二極體並且分析其特性,我們將發光面積之直徑定義為120μm、60μm、40μm、20μm、10μm、5μm,並且分析隨著尺寸變化,光、電特性將會有何影響。
第二部份我們製作960×540微型發光二極體陣列,像素密度高達1600PPI,接著與副載置片做覆晶接合,並且利用軟體計算接合後的可操作性及有效發光像素數量,未來將與驅動電路做接合,可作微型顯示器,可望應用在穿戴式裝置、微型投影機、車用裝置等顯示器上。
The thesis is Fabrication and Performance Analysis of AlGaInP-Based Micro-LED array for 960×540 Pixel Display Applications [1], and is mainly divided into two parts-characteristics analysis and flip-chip bonding. At first, the AlGaInP-based epitaxy layer is grown on GaAs substrate. Because of light-absorbing effect of GaAs, the epitaxy layer is transferred to sapphire and the GaAs substrate is removed by wet-etching [2]. Then we define the mesa by ICP-RIE and design the grid-electrode for current spreading uniformly. After the deposition of electrode, we use the RTA to form ohmic contact. For the post-fabrication and decreasing the leakage current, we deposit the passivation layer by PECVD. Finally, we deposit indium bump on the top of mesa to bond with submount.
In part 1, we fabricate micro-LED with different size and analyze the characteristics. We define the diameter of LED as 120μm, 60μm, 40μm, 20μm, 10μm, 5μm from large to small. Then analyze the change of electrical and optical properties with different size.
In part 2, we fabricate 960×540 micro-LED array with 1600PPI. Then flip-chip bonding with submount, calculating the operability and the mount of light pixels by software imageJ. We will demonstrate the device with driver IC for display in the future and the applications include wearable device, pico-projector, automotive and so on.
摘 要 I
Abstract II
致 謝 IV
Contents VI
List of Figures VIII
Chapter 1 Introduction 1
1-1 Introduction to Light-Emitting Diodes 1
1-2 Application of Light-Emitting Diodes 2
1-3 Research motivation 2
Chapter 2 The Basic Theory 6
2-1 The principle of Light Emitting Diode 6
2-2 Characteristic of Current versus Voltage 8
2-3 Characteristic of Light-output Power versus Current 12
2-4 Characteristic of Electroluminescence 13
2-5 Transmission line measurement 15
Chapter 3 Experimental program 18
3-1 Epitaxy structure 18
3-2 Idea of Micro-LED Design and mask design concept 20
3-2-1 Mask design of size-dependent Micro-LED 21
3-2-2 Mask design of 960×540 Micro-LED array 22
3-3 Process steps and Experiment details 26
3-3-1 Size-dependent Micro-LED 26
3-3-2 960×540 Micro-LED array 31
3-3-3 Submount 38
3-3-4 Driver IC 41
3-4 Measurement system 46
3-4-1 I-V measurement system 46
3-4-2 L-I and E-L measurement system 46
Chapter 4 Result and Discussion 48
4-1 Characteristics of TLM 48
4-2 Characteristics of size-dependent Micro-LED 53
4-2-1 I-V measurement 53
4-2-2 L-I measurement 56
4-3 Characteristics of 960×540 Micro-LED array 59
4-3-1 I-V measurement 59
4-3-2 L-I measurement 60
4-3-3 E-L measurement 62
4-4 Flip-chip bonding test 63
Chapter 5 Conclusion 66
References 68
[1] Evans, D.L. High-luminance LEDs replace incandescent lamps in new applications. in light-emitting diodes: research, manufacturing, and applications. 1997. International Society for Optics and Photonics.
[2] Horng, R.-H., et al., Development and Fabrication of AlGaInP-Based Flip-Chip Micro-LEDs. IEEE Journal of the Electron Devices Society, 2018. 6: p. 475-479.
[3] https://en.wikipedia.org/wiki/Light-emitting_diode#cite_note-Losev1927-14.
[4] https://en.wikipedia.org/wiki/Electroluminescence.
[5] https://case.ntu.edu.tw/blog/?p=28513.
[6] Chong, W.C., et al. 60.4: A Novel Full‐Color 3LED Projection System using R‐G‐B Light Emitting Diodes on Silicon (LEDoS) Micro‐displays. in SID Symposium Digest of Technical Papers. 2013. Wiley Online Library.
[7] Liu, Z.J., et al., A novel BLU-free full-color LED projector using LED on silicon micro-displays. 2013. 25(23): p. 2267-2270.
[8] Schubert, E.F., LIGHT-EMITTING DIODES. 2006.
[9] 賴福興, 對應紅色供應鏈強勢崛起可行策略分析— 以台灣LED上游產業晶電為例, in 高階主管經營管理碩士在職專班. 2016, 清華大學. p. 1-71.
[10] https://www.ledinside.com/news/2018/5/application_and_technology-roadmap_of_micro_led.
[11] https://en.wikipedia.org/wiki/P%E2%80%93n_junction.
[12] Cho, J., et al., Efficiency droop in light‐emitting diodes: Challenges and countermeasures. 2013. 7(3): p. 408-421.
[13] https://en.wikipedia.org/wiki/Diode#Shockley_diode_equation.
[14] https://en.wikipedia.org/wiki/Full_width_at_half_maximum.
[15] Tuttle, G. and i.s. university, Contact resistance and TLM measurements. 2012.
[16] Khani, M., et al. Transmission line model (TLM) method study of nanostructural AuGeNi/n-GaAs ohmic contact layer for different substrate deposition temperature. in 20th Iranian Conference on Electrical Engineering (ICEE2012). 2012. IEEE.
[17] https://www.neowin.net/forum/topic/1235737-does-having-higher-resolution-mean-more-on-screen-content-pc-gaming/.
[18] Wang, Y., et al. Research on rapid thermal annealing of ohmic contact to GaAs. in 2012 International Conference on Optoelectronics and Microelectronics. 2012. IEEE.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *