帳號:guest(3.145.173.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐識博
作者(外文):Hsu, Shih-Po.
論文名稱(中文):橫向型4H-SiC碳化矽高崩潰電壓元件研製
論文名稱(外文):The Design and Fabrication of Lateral 4H-SiC High Voltage Devices
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):崔秉鉞
李坤彥
口試委員(外文):Tsui, Bing-Yue
Lee, Kung-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063539
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:72
中文關鍵詞:碳化矽橫向型元件高電壓元件高崩潰電壓深溝槽隔離
外文關鍵詞:SiCsilicon carbidelateral devicehigh breakdown voltagedeep trench isolation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:758
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文,是以4H-SiC為材料,製作橫向型高崩潰電壓元件,如PiN二極體、LDMOS,並應用深溝槽隔離 (Deep Trench Isolation, DTI)、double RESURF (Reduced Surface Field) 原理與氧化後NO退火製程於元件研製。
在元件設計中,double RESURF的原理,能夠幫助空乏區於漂移區垂直以及水平方向充分展開,因此在提高漂移區濃度以降低導通電阻的同時,能夠維持相同的崩潰電壓。同時,也採取了氧化後NO退火的製程,來進一步改進導通電阻值。
根據量測的結果,PiN二極體最佳特徵導通電阻為1.57 mΩ-cm2,崩潰電壓為975 V;LDMOS最佳特徵導通電阻為133 mΩ-cm2,崩潰電壓為809 V;DTI測試結構可以達成945 V 電路高低壓區域隔離的效果。由上述結果可知,本實驗所製作的PiN、LDMOS元件其BFOM (Baliga's Figure Of Merit) 超過了Si極限,以及那些以Si製作的橫向型元件,再再顯現了SiC橫向型元件優異的發展潛力。
In this study, deep trench isolation (DTI), double reduced surface field (RESURF) concept, and post-oxidation NO annealing were applied to design and fabrication of lateral high voltage devices in 4H-SiC, such as PiN diode and LDMOS.
In the design of the fabricated devices, the concept of double RESURF is employed, which helps depletion of the drift region from both top and bottom sides. As a result, the drift region concentration can be increased with the decrease in on-resistance while keeping the same breakdown voltage. In the meantime, post-oxidation NO annealing is also employed in the process to improve the on-resistance.
According to the measurement results, the best specific on-resistance is 1.57 mΩ-cm2 for PiN diodes and breakdown voltage achieved is 975 V. For LDMOS, the best specific on-resistance is 133 mΩ-cm2 with a breakdown voltage of 809 V. As for DTI test structure, which isolates high side and low side functions of the circuits, can isolate 945 V. Based on these result, the Baliga’s Figure Of Merit (BFOM) of the PiN diode and LDMOS demonstrated in this work has surpassed the Si limit, and exceed those of the Si lateral devices, which shows the excellent potential of SiC lateral devices.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 序論 1
1.1 前言 1
1.2 碳化矽材料簡介 2
1.3 文獻回顧 4
1.3.1 Baliga’s Figure Of Merit (BFOM) 4
1.3.2 RESURF (Reduced Surface Field) 理論 5
1.3.3 場平板 (Field plate) 7
1.3.4 氧化後退火 8
1.3.5 橫向型SiC元件 10
1.3.6 動機與論文大綱 11
第二章 元件介紹與實驗設計 13
2.1 磊片結構 13
2.2 元件介紹 14
2.2.1 TLM元件 15
2.2.2 PiN元件 16
2.2.3 深溝槽隔離 (Deep Trench Isolation, DTI) 測試結構 18
2.2.4 LDMOS 20
2.2.5 MOSC 22
2.3 離子佈值技術 23
2.3.1 P型井 (p-well) 離子佈值 23
2.3.2 陽極、深溝槽側壁P型離子佈值 24
2.3.3 陰極N型離子佈值 25
2.3.4 P-top 離子佈值 26
2.3.5 佈值後退火 28
2.4 氧化製程 28
第三章 元件製程 29
3.1 一般清洗 (normal clean) 29
3.2 黃光顯影製程 (Lithography & Development) 30
3.3 殘餘光阻去除 (Residual Photoresist Removal) 30
3.4 定義對準標記 (Define Alignment Key) 30
3.5 離子佈植 (Ion Implantation) 31
3.6 深溝槽隔離 (DTI, Deep Trench Isolation) 32
3.7 電性活化 (Activation) 33
3.8 氧化製程 (Oxidation) 34
3.9 陽極與基極歐姆接觸 (Anode & Body ohmic contact) 35
3.10 陰極與源極汲極歐姆接觸 (Cathode, Source & Drain ohmic contact) 35
3.11 墊金屬與閘極金屬 (Pad metal & Gate metal) 36
第四章 量測與結果分析 36
4.1 基本介紹 36
4.2 MOSC 39
4.3 TLM 42
4.4 二極體 50
4.4.1 順向特性 50
4.4.2 逆向特性 54
4.5 DTI測試結構 58
4.5.1 逆向特性 58
4.6 LDMOS 60
4.6.1 順向特性 60
4.6.2 逆向特性 63
4.7 文獻比較 67
第五章 結論及未來展望 68
參考文獻 70

[1] 鄭華琦, 下世代功率元件市場趨勢, 工業技術研究院工業材料雜誌, 2018.
[2] R. Cheung, Silicon Carbide Microelectromechanical Systems for Harsh Environments, Imperial College Press, 2006, p. 3.
[3] A. Powell and L. Rowland, "SiC materials-progress, status, and potential roadblocks," Proceedings of the IEEE, vol. 90, no. 6, pp. 942 - 955, June 2002.
[4] S.-M. Koo, S.-K. Lee, N. Nordell, M. Ostling, S. J. Pearton, A. Schoner and E. Sveinbjornsson, Process Technology for Silicon Carbide Devices, C. Zetterling, Ed., Stylus Pub Llc, 2002.
[5] K. Shenai, R. Scott and B. Baliga, "Optimum semiconductors for high-power electronics," IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 1811 - 1823, Sep. 1989.
[6] J. Appels and H. Vaes, "High voltage thin layer devices (RESURF devices)," in 1979 International Electron Devices Meeting, Washington, DC, USA, 1979, pp. 238-241.
[7] M. Imam, M. Quddus, J. Adams and Z. Hossain, "Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices," IEEE Transactions on Electron Devices, vol. 51, no. 1, pp. 141 - 148, 7 Jan. 2004 .
[8] H. Vaes and J. Appels, "High voltage, high current lateral devices," in 1980 International Electron Devices Meeting, Washington, DC, USA, USA, 1980, pp. 87-90.
[9] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer Science + Business Media, LLC, 2008, p. 133.
[10] H.-f. Li, S. Dimitrijev, H. B. Harrison and D. Sweatman, "Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing," Applied Physics Letters, vol. 70, p. 2028, 10 Feb. 1997.
[11] G. Chung, C. Tin, J. Williams, K. McDonald, R. Chanana, R. Weller, S. Pantelides, L. Feldman, O. Holland, M. Das and J. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," IEEE Electron Device Letters, vol. 22, no. 4, pp. 176 - 178, Apr. 2001.
[12] C.-Y. Lu, J. Cooper, T. Tsuji, G. Chung, J. Williams, K. McDonald and L. Feldman, "Effect of process variations and ambient temperature on electron mobility at the SiO2/4H-SiC interface," IEEE Transactions on Electron Devices, vol. 50, no. 7, pp. 1582 - 1588, 04 Aug. 2003.
[13] D. Okamoto, H. Yano, K. Hirata, T. Hatayama and T. Fuyuki, "Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide," IEEE Electron Device Letters, vol. 31, no. 7, pp. 710 - 712, Jul. 2010.
[14] Y. Nanen, M. Kato, J. Suda and T. Kimoto, "Effects of Nitridation on 4H-SiC MOSFETs Fabricated on Various Crystal Faces," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1260-1262, Mar. 2013.
[15] K. Chatty, S. Banerjee, T. Chow and R. Gutmann, "High-voltage lateral RESURF MOSFETs on 4H-SiC," IEEE, vol. 21, no. 7, pp. 356 - 358, July 2000 .
[16] S. Banerjee, T. Chow and R. Gutmann, "Robust, 1000V, 130 mΩ-cm2, lateral, two-Zone RESURF MOSFETs in 6H-SiC," in Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics, Sante Fe, NM, USA, 2002, pp. 69-72.
[17] T. Kimoto, H. Kawano and J. Suda, "1330 V, 67 mΩ-cm2 4H-SiC(0001) RESURF MOSFET," IEEE ELECTRON DEVICE LETTERS, vol. 26, no. 9, pp. 649-651, Septemper 2005.
[18] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, "Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs," Materials Science Forum, Vols. 527-529, pp. 1305-1308, October 2006.
[19] M. Noborio, J. Suda and T. Kimoto, "4H-SiC Double RESURF MOSFETs with a Record Performane by Increasing RESURF Dose," in 2008 20th International Symposium on Power Semiconductor Devices and IC's, Orlando, FL, USA, 2008, pp. 263-266.
[20] T. Kimoto, K. Kawahara, N. Kaji, H. Fujihara and J. Suda, "Ion implantation technology in SiC for high-voltage/high-temperature devices," in 16th International Workshop on Junction Technology (IWJT), Shanghai, China, 2016, pp. 54-58.
[21] T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T. Shimura, M. Takei and a. H. Watanabe, "Ultrahigh-temperature rapid thermal oxidation of 4H-SiC(0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties," Applied Physics Letters, vol. 109, no. 18, Oct. 2016.
[22] D. K. Schroder, Semiconductor Material and Device Characterization, Third ed., Wiley - IEEE, 2006, pp. 139-149.
[23] F.-J. Yang, J. Gong, R.-Y. Su, C.-L. Tsai, H.-C. Tuan and C.-F. Huang, "RESURF p-n Diode With a Buried Layer, a Comprehensive Study," IEEE Transactions on Electron Devices , vol. 60, no. 11, pp. 3835 - 3841, 08 October 2013.
[24] Sridhar, Huang and Baliga, "Dielectrically isolated lateral high voltage P-i-N rectifiers for power ICs," in 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992, pp. 245-248.
[25] S. Cheng, D. Fang, M. Qiao, S. Zhang, G. Zhang, Y. Gu, Y. He, X. Zhou, Z. Qi, Z. Li and B. Zhang, "A novel 700V deep trench isolated double RESURF LDMOS with P-sink layer," in 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 2017, pp. 323-326.
[26] S. Lee, C. K. Jeon, J. Moon and Y. Choi, "700V Lateral DMOS with New Source Fingertip Design," in 2008 20th International Symposium on Power Semiconductor Devices and IC's, Orlando, FL, USA, 2008, pp. 141-144.
[27] Q. Ming, J. Lingli, Z. Bo and L. Zhaoji, "A 700 V BCD technology platform for high voltage applications," Journal of Semiconductors, vol. 33, no. 4, April 2012 .
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *