帳號:guest(3.138.113.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王柏翔
作者(外文):Wang, Bo-Xiang
論文名稱(中文):1920×1080 高解析顯示應用之像素 5 微米氮化鎵微型發光二極體陣列研製與分析
論文名稱(外文):Fabrication and Analysis of Resolution 1920×1080 with 5 μm GaN-based Micro-Light Emitting Diodes for High Resolution Display Applications
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):謝明勳
李世昌
口試委員(外文):Hsieh, Min-Hsun
Lee, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063532
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:69
中文關鍵詞:微型發光二極體陣列氮化鎵自行對準微型顯示器高解析度
外文關鍵詞:micro-LED arrayGaNself-alignedflip chipmicro displayhigh resolution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:591
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要設計1920x1080 氮化鎵微型發光二極體陣列並製作出微型化顯示器。首先我們先分析尺寸對於微型發光二極體的光電特性影響,設計六種不同尺寸,分別為5微米、10微米、20微米、40微米、60微米、120微米。分析完後,5微米的微型發光二極體具有最低的點亮電壓和最小的漏電流,並且是可以配合驅動IC的規格。接著利用自動對準技術縮小像素間距使其小於10微米以及銦錫氧化物(ITO)薄膜製作出良好的特性,主要研製的波段是藍光450奈米與綠光525奈米,在圖形化的藍寶石基板(PSS)上,用有機金屬化學氣相沉積系統(MOCVD)製作出氮化鎵磊晶層,再利用感應偶合電漿離子蝕刻系統(ICP-RIE)蝕刻出磊晶層的高原(MESA),最後鍍上n與p電極。
日常生活中,發光二極體主要應用照明或是標誌為主,但我們希望將發光二極體提升至更進一步的應用,像是投影機或是顯示器,因此需要將發光二極體做成陣列,下一帶的顯示器可能會以微型發光二極體陣列為目標,像是頭戴式顯示器虛擬實境,亦或是手機,這類的現在解析度都要求越來越高,因此我們如何能製作一個微小的發光二極體並且是高解析度的陣列,以及均勻發光,這些都是相當重要的。首先,磊晶片包含十層量子井,其能夠盡可能增加電子電洞復合並轉換成光子,提高發光效率;在磊晶片上,利用銦錫氧化物(ITO)的透明導電膜層作為p+型氮化鎵形成歐姆接觸,目的是減少接觸電阻達到更好的歐姆接觸,達到特性優化的效果。並且利用自動對準技術形成網格狀的n型電極,使電流至每個像素的路徑一致,達到高均勻亮度。
在本論文中1920x1080微型發光二極體陣列,像素為5微米,各個像素距離為8微米。而我們的微型發光二極體陣列皆使用投影機與螢幕的常見比例16:9作為設計,尺寸是在0.69吋,像素密度是3178.8。自動對準技術的關鍵在於ICP蝕刻,而達到倒梯型,進而製作出1920×1080微型發光二極體陣列,而各種波段的特性如下:在10伏特的逆偏壓下藍光波段的漏電流為48 fA,綠光波段的漏電流為2.74 fA。在正偏壓下,藍光波段的導通電壓為2.74伏特,綠光波段的導通電壓為2.57伏特。在注入1 mA電流下,藍光波段的光輸出功率為26.3 μW,綠光波段的光輸出功率為15.76 μW。藍光波段最好的外部量子效率是3.28 %,綠光波段最好的外部量子效率是3.31 %。藍光波段最好的電光轉化效率是2.92%,綠光波段最好的電光轉化效率是3.08%。
而我們也利用覆晶接合(flip-chip bonding)技術與IC做接合,我們先用submount來對bonding參數做測試,我們也對銦點(Indium bump)的回流(reflow)縮球技術做研究,最後成功製備出球狀的銦球,這樣會使接合時的阻值更小,增加接合的成功率,最後也完成與IC(SP70)成功bonding,完成了90.03% 的display。
In this thesis, the major design 1920x1080 Gallium Nitride (GaN) based micro light emitting diode array and develop it to micro display. First, We analysis the influence of the size on the photoelectric characteristics of the micro-light-emitting diode, and design six different sizes, which were 5 μm, 10 μm, 20 μm, 40 μm, 60 μm, and 120 μm, respectively. Then, the pixel pitch is less than 10μm by self-aligned technology, and uses indium tin oxide (ITO) to improve the characteristics of the micro-light-emitting diode array. The main development bands are blue light 450 nm and green light 525 nm. On the patterned sapphire substrate (PSS), a Gallium Nitride epitaxial layer was formed by a metalorganic chemical vapor deposition system (MOCVD), and an epitaxial layer was etched by an inductively coupled plasma ion etching (ICP-RIE) system. a MESA of epitaxial layer is then formed, after n-metal and p-metal is deposited.
In daily life, the LEDs are mainly used for lighting or signage, but we hope to make good use of LED’s tremendous advantages, such as projectors or displays, so we need to make the LEDs into an array. In the future, the next display may target a miniature LED array, such as a virtual reality headset or a mobile phone. This type of resolution is now getting higher and higher, so how can we make it? A micro light-emitting diode and a high-resolution micro-LED array, as well as uniform illumination, are all very important. First, the epitaxial wafer contains ten layers of quantum wells, which can increase the electron hole recombination and convert it into photons as much as possible, and improve the luminous efficiency. On the epitaxial wafer, using an indium tin oxide (ITO) transparent conductive film layer as p+ type GaN to form an ohmic contact, in order to reduce the contact resistance to achieve a better ohmic contact, to achieve the characteristics of the optimization effect. And, grid-shaped n-type electrode is achieve by self-aligned technology to align the current to each pixel to achieve a high uniform brightness.
In this thesis, the 1920x1080 miniature light-emitting diode array has a pixel of 5 microns and a distance of 8 microns for each pixel. And our miniature LED arrays which the size is 0.69 inch use a 16:9 ratio of the projector or the screen and pixel per inch is 3178.8. The key to the self-aligned technology is ICP etching and the MESA is dumbbell-shaped, and a 1920×1080 micro-LED array is fabricated. For a single pixel characteristic of 1920×1080 micro-LEDs array are as follows: the leakage of the blue light band under the reverse bias of 10 volts the current is 48 fA and the leakage current in the green band is 2.74 fA. Under positive bias, the on-voltage of the blue band is 2.74 volts and the on-voltage of the green band is 2.57 volts. At a current of 1 mA, the optical output power of the blue band is 26.3 μW and the optical output power of the green band is 15.76 μW. The best external quantum efficiency in the blue band is 3.28% and the best external quantum efficiency in the green band is 3.31%. The best electro-optical conversion efficiency in the blue band is 2.92% and the best electro-optical conversion efficiency in the green band is 3.08%.
We also use flip-chip bonding technology to bond with IC. We first use submount to test the bonding parameters. We also study the indium bump reflow technique. Finally, the spherical indium sphere was successfully prepared, which made the resistance value at the time of bonding smaller, increased the success rate of bonding, and finally completed the successful bonding with IC (SP70), and completed 90.03% of the display.
摘要 I
ABSTRACT III
致謝 VI
TABLE OF CONTENTS VIII
LIST OF FIGURE XI
CHAPTER 1 INTRODUCTION 1
1-1 Introduction to Light Emitting Diodes 1
1-2 Application of Light Emitting Diodes 2
1-3 Research Motivation 3
CHAPTER 2 THE BASIC THEORY 8
2-1 The basic theory of Light Emitting Diodes 8
2-2 LED I-V Curve Characteristic 9
2-3 LED L-I Curve Characteristic 16
2-4 LED E-L Curve Characteristic 20
CHAPTER 3 EXPERIMENTAL PROCEDURE 23
3-1 Device Structure and Mask Design Concept 23
3-1-1 Size dependent properties of micro LED 23
3-1-2 1920×1080 micro-LED array 26
3-2 Process Steps and Experimental Details 30
3-2-1 Process steps for size dependent properties of micro LED 30
3-2-2 Process steps for 1920×1080 micro-LED array 33
3-3 Measurement Means and Characterization Instruments 41
3-3-1 Transmission line measurement (TLM) 41
3-3-2 I-V measurement system 43
3-3-3 L-I and E-L measurement system 44
CHAPTER 4 MEASUREMENT RESULTS AND DISCUSSION 45
4-1 Sze dependent properties of micro LED 45
4-1-1 I-V characteristic and analysis 45
4-1-2 L-I characteristic and analysis 49
4-2 The 1920×1080 micro-LED array 52
4-2-1 Specific contact resistance between p-GaN and ITO film 52
4-2-2 I-V characteristic and analysis 53
4-2-3 L-I characteristic and analysis 54
4-2-4 E-L characteristic and analysis 58
4-3 The 1920×1080 micro-LED display demo 60
4-3-1 Bonding test 60
4-3-2 1920×1080 micro LED array with submount 62
4-3-2 1920×1080 micro LED display 63
CHAPTER 5 CONCLUSIONS 65
REFERENCE 67
[1] 賴福興. "對應紅色供應鏈強勢崛起可行策略分析—以台灣 LED 上游產業晶電為例." 清華大學高階主管經營管理碩士在職專班學位論文 (2016): 1-71. P.8-15
[2] https://en.wikipedia.org/wiki/Light-emitting_diode
[3] Wu Shuai. Design,” Fabrication and Testing of Micro-pixel Array Sub-280 Nm Deep Uv Light Emitting Diodes”. Diss. University of South Carolina, 2004. P10-18.
[4] http://technews.tw/2016/10/07/micro-led-and-cross-industry-consortium/
[5] Bin Xue, Hua Yang, Fei Yu, Xiaotong Wang, Lili Liu, Yanrong Pei, Pengzhi Lu, Haizhong Xie, Qingfeng Kong, Jing Li, Xiaoyan Yi, Junxi Wang and Jinmin Li, “Colour tuneable micro-display based on LED matrix,“ Proc. SPIE 9270, Optoelectronic Devices and Integration V, vol. 9270, pp. 92701B, Oct24, 2014.
[6] Z. Y. Fan, J. Y. Lin, and H. X. Jiang. "III-nitride micro-emitter arrays: development and applications." Journal of Physics D: Applied Physics 41.9 (2008): 094001.
[7] H. W.Choi, C. W. Jeon, and M. D. Dawson. "High-resolution 128 x 96 nitride microdisplay." IEEE Electron Device Letters 25.5 (2004): 277-279.
[8] Zhao Jun Liu, et al. "A novel BLU-free full-color LED projector using LED on silicon micro-displays." IEEE Photonics Technology Letters 25.23 (2013): 2267-2270.
[9] Wing Cheung Chong, et al. "60.4: A Novel Full‐Color 3LED Projection System using R‐G‐B Light Emitting Diodes on Silicon (LEDoS) Micro‐displays." SID Symposium Digest of Technical Papers. Vol. 44. No. 1. Blackwell Publishing Ltd,
[10] Z Y Fan, J Y Lin and H X Jiang, “III-nitride micro-emitter arrays: development and applications,” J. Phys. D: Appl. Phys. vol. 41, no. 9, pp. 12, Apr4, 2008.
[11] H.Föll. 5.1.4 Wavelength Engineering (Semiconductor-script) [online]. Available: http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
[12] 德州儀器亞洲區DLP事業部門. (2003, Sep 9). DLP™技術概要 [online]. Available: http://www.ti.com.tw/articles/detail.asp?sno=18
[13] Zhao Jun Liu, et al. "A novel BLU-free full-color LED projector using LED on silicon micro-displays." IEEE Photonics Technology Letters 25.23 (2013): 2267-2270.
[14] E.F. Schubert, Light-Emitting Diodes, 2nd ed. Cambridge U.K.: Cambridge Univ. Press, 2006. Chapter4-5
[15] M. Fukuda, Optical Semiconductor Devices, John Wiley & Sons, 1999, p. 101
[16] Joachim Piprek. (2015, Feb 17). Experts still divided over cause of GaN-LED efficiency droop [online]. Available: https://nusod.wordpress.com/2015/02/17/ experts-still-divided-over-cause-of-gan-led-efficiency-droop/
[17] François Olivier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. vol. 191, pp. 112-116, Nov., 2017.
[18] Chi-Kang Li, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” IEEE Trans. Electr. Dev. vol. 59, pp. 112-116, Feb., 2017.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *