帳號:guest(18.191.70.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳政翰
作者(外文):Wu, Jheng-Han.
論文名稱(中文):量測黏滯度與密度之CMOS MEMS微懸臂樑開發
論文名稱(外文):Development of CMOS MEMS cantilevers for characterization of viscosity and mass density
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-cheng
口試委員(中文):劉承賢
羅丞曜
口試委員(外文):Liu, Cheng-Hsien
Lo, Cheng-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063530
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:微懸臂樑壓阻感測電容感測黏滯度與密度
外文關鍵詞:MicrocantileverPiezoresistive SensingCapacitive sensingViscosity and Density
相關次數:
  • 推薦推薦:0
  • 點閱點閱:347
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本論文探討如何以懸臂樑共振頻率的變化來量測液體的黏滯度與密度。微結構懸臂樑的致動方式包含壓電片驅動與靜電驅動兩種,壓電片驅動是透過晶片下面的壓電片振動而來,靜電驅動則是在兩電極間施加一隨時間週期性變化的電壓,使得振動元件受到交替的靜電推力而產生振動,電路感測方式有兩種,一種是壓阻式感測,將多晶矽材料的壓阻沉積在微結構的懸臂樑之中,藉由懸臂樑在液體中的振動導致的壓阻變化,轉化為電訊號的變化;另一種是電容式感測,藉由懸臂樑在液體中的振動導致的電容值變化,轉化為電訊號的變化,此變化可得知懸臂樑結構在液體中的共振頻率與品質因素,再利用共振頻率與品質因素來分析得到液體中的黏滯度與密度,未來希望透過增益與相位補償電路來建立振盪迴圈,偵測結構的輸出振頻。
本晶片使用TSMC 2P4M 0.35μm CMOS製程,將靜電驅動式微結構懸臂樑與感測電路整合於單一個晶片上,晶片總面積為3.52 mm×2.7 mm,利用CMOS製程將氧化層及多晶矽層當作振動結構之質量塊,設計兩種不同寬度和厚度的微懸臂樑來比較其感測度,其中較寬的結構可以得到較高的量測品質因素,較高的品質因素可提升量測的精準性。
完成製程後,微懸臂樑結構量測的結果,空氣共振頻率測得為83 kHz,模擬則為113kHz,其誤差原因是製程後導致微懸臂樑厚度變薄,另外在純水溶液之共振頻率為24.65kHz、品質因素為14.94,透過這些量測數值可以間接推得該液體的黏滯度與密度。
In this thesis, we study how to measure the viscosity and density of liquids with the changes in resonant frequency and quality factor of the cantilever beams. The cantilever beams can be driven by piezoelectric or capacitive actuation. Piezoelectric actuator is attached underneath the CMOS chip, while capacitive driving is provided by on-chip electrodes. Two sensing methods are used. The polycrystalline silicon at the anchor of a cantilever beam serves as a piezoresistive sensor to detect the force caused by vibration of the cantilever beam in liquids. Capacitive sensing is also used to detect the vibration of cantilever beams. The viscosity and density are calculated based on the measured resonant frequency and quality factor in liquids. In the future, it is desirable to implement an oscillation loop with the compensation circuits for gain and phase in the aim to measure the resonant frequency shift.
The integrated chip containing the mechanical structure, driving electrode and sensing circuits, is implemented by using the 2P4M 0.35-μm CMOS process. The chip area is 3.52 × 2.7 mm2. Structures are made of silicon dioxide. Sensing performances of designs with different widths and thicknesses are compared. The wider structure can obtain a higher quality factor from the measurement, leading to improved accuracy.
After completion of the post fabrication process, the resonant frequency of one micro-cantilever is measured at 83 kHz in air, as compared to 113 kHz by simulation, which is owing to the reduced thickness from the post fabrication process. The measured resonant frequency in de-ionized water is 24.65 kHz and the quality factor is 14.94. The viscosity and density of the liquid can be calculated from the measured values.
摘要 I
Abstract II
致謝 III
符號解釋 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第1章 緒論 12
1-1 前言 12
1-2 文獻回顧 14
1-3 研究動機 16
1-4 晶片系統架構 17
第2章 微懸臂樑結構設計與製作 19
2-1 液體理論分析 19
2-2 液體黏滯度與密度計算 22
2-3 結構設計與模擬 23
2-4 驅動方式與感測電路 30
2-5 後製程設計 33
第3章 量測與討論 35
3-1 後製程量測 35
3-2 結構模態量測 38
3-3 結構在真空中自然振頻與空氣中共振頻率比較 41
3-4 液體量測 42
3-5 不同寬度的微懸臂樑在液體量測之品質因素比較 48
3-6 液體黏滯度與密度之計算 49
3-7 量測平台架設 53
3-8 量測與製程討論 56
第4章 結論與未來 58
第5章 參考文獻 59
第6章 附錄 62

[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol 86, pp. 1552-1574, 1998.
[2] J. E. Sader, "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope," Journal of Applied Physics, vol 84, pp. 64–76, 1998.
[3] Cornelis A. V. Eysden, and J. E. Sader, "Resonant frequencies of a rectangular cantilever beam immersed in a fluid," Journal of Applied Physics, vol 100, 114916, 2006.
[4] Cornelis A. V. Eysden, and J. E. Sader, "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order," Journal of Applied Physics, vol 101, 044908, 2007.
[5] Cornelis A. V. Eysden, and J. E. Sader, "Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope," Journal of Applied Physics, vol 106, 094904, 2009.
[6] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, and J. P. Aime, "Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids," Journal of Applied Physics, vol 97, 074907, 2005.
[7] O. Cakmak, C. Elbuken, E. Ermek, A. Mostafazadeh, I. Baris, B. Erdem Alaca, I.H. Kavakli, and H. Urey, "Microcantilever based disposable viscosity sensor for serum and blood plasma measurements," Methods, vol 63, pp. 225–232, 2013.
[8] O. Cakmak, C. Elbuken, E. Ermek, G. G. Yaralioglu, and H. Urey, "Precision density and viscosity measurement using two cantilevers with different widths," Sensors and Actuators A, vol 232, pp. 141–147, 2015.
[9] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, and I. Dufour, "A straightforward determination of fluid viscosity and density using microcantilevers : From experimental data to analytical expressions," Sensors and Actuators A, vol 172, pp. 40-46, 2011.
[10] G. Eris, A. A. Bozkurt, A. Sunol, A. Jonásˇ, A. Kiraz, B. E. Alaca, and C. Erkey, "Determination of viscosity and density of fluids using frequency response of microcantilevers," Journal of Supercritical Fluids, vol 105, pp. 179–185, 2015.
[11] C. Bergaud, and L. Nicu, "Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media," Review of Scientific Instruments, vol 71, pp. 2487-2491, 2000.
[12] I. Dufour, A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel, H. Kellay, E. Lemaire, F. Mathieu, C. Pellet, D. Saya, M. Youssry, L. Nicu, and A. Colin, "The microcantilever a versatile tool for measuring the rheological properties of complex fluids," Journal of Sensors Designlume, Article ID 719898, 2012.
[13] M. Youssry, E. Lemaire, B. Caillard, A. Colin, and I. Dufour, "On-chip characterization of the viscoelasticity of complex fluids using microcantilevers," Measurement Science and Technology, vol 23, pp. 1-10, 2012.
[14] K. Rijal, and R. Mutharasan, "Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium," Sensors and Actuators B, vol 124, pp. 237–244, 2007.
[15] G.A. Campbell, and R. Mutharasan, "Sensing of liquid level at micron resolution using self-excited millimeter-sized PZT-cantilever," Sensors and Actuators A, vol 122, pp. 326–334, 2005.
[16] M. L. Mather, M. Rides, C. R. G. Allen, and P. E. Tomlins, "Liquid viscoelasticity probed by a mesoscale piezoelectric bimorph cantilever," Journal of Rheology, vol 56, pp. 99-112, 2012.
[17] A. Agoston, F. Keplinger, and B. Jakoby, "Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids," Sensors and Actuators A, pp. 123–124 82–86, 2005.
[18] R. Cox, F. Josse, M. J. Wenzel, S. M. Heinrich, and I. Dufour, "Generalized model of resonant polymer-coated microcantilevers in viscous liquid media," Analytical Chemistry, vol 80, pp. 5760–5767, 2008.
[19] M. Hennemeyer, S. Burghardt, and R. W. Stark, "Cantilever micro-rheometer for the characterization of sugar solutions," Sensors, vol 8, pp. 10-22, 2008.
[20] R. Motamedi, and P. M. Wood-Adams, "Measurement of fluid properties using an acoustically excited atomic force microscope microcantilever," Journal of Rheology, vol 54, pp. 959-980, 2010.
[21] P. Rust, I. Leibacher, and J. Dual, "Temperature controlled viscosity and density measurements on a microchip with high resolution and low cost," Procedia Engineering, vol 25, pp. 587–590, 2011.
[22] I. Dufour, E. Lemaire, B. Caillard, H. Debeda, C. Lucat, S. M. Heinrich, F. Josse, and O. Brand, "Effect of hydrodynamic force on microcantilever vibrations: applications to liquid-phase chemical sensing," Electrical and Computer Engineering Faculty Research and Publications, 2013.
[23] M. L. Mather, M. Rides, C. R. G. Allen, and P. E. Tomlins, "Liquid viscoelasticity probed by a mesoscale piezoelectric bimorph cantilever," Journal of Rheology, vol 56, pp. 99-112, 2012.
[24] J. B. Secur, and Helen E. Oberstak, "Viscosity of glycerol and gts aqueous
solution," Industrial And Engineering Chemistry, vol 43, pp. 2117–2120, 1951.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *