|
[1] 張鼎張, 施志承, 陳柏勳, 次世代電阻式記憶體發展, 自然科學簡訊第三十卷第一期, 2018 [2] Jalil Boukhobza, Pierre Olivier, Flash Memory Integration, 2017, p203-224 [3] Jagan Singh Meena, Simon Min Sze, Umesh Chand and Tseung-Yuen Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Research Letters, 2014, p9-526 [4] Christian Nauenheim, Integration of resistive switching devices in crossbar structures, 2009, p7-22 [5] Yan Li, Khandker N. Quader, NAND Flash Memory: Challenges and Opportunities. IEEE, 2013, p.23-29 [6] S. K. Lai, Floating gate memories: Moore’s law continues, International Symposium on VLSI Technology, April 2005, p.74-77 [7] Monal Gupta, Dr. Jyoti Kedia, A Review on Resistive Random Access Memory, Volume 7, Issue 3, March 2018, p184-191 [8] Stephen Evanczuk, FRAM ICs Extend Endurance in Low-Power Applications, Digi-Key Electronics, 2015 [9] Jim Handy, What’s the Difference Between All Those Emerging Memory Technologies?, ElectronicDesign, Jan 25, 2018 [10] Yiming Huai, Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects, AAPPS Bulletin, December 2008, Vol. 18, No. 6, p.33-40 [11] Noriyuki Sato, Fen Xue, Robert M White, Chong Bi, Shan X Wang, Two-terminal spin–orbit torque magnetoresistive random access memory, Nature Electron, 2018, p.508-511 [12] Fabian Oboril, Rajendra Bishnoi, Mojtaba Ebrahimi and Mehdi B. Tahoori, Evaluation of Hybrid Memory Technologies using SOT-MRAM for On-Chip Cache Hierarchy, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol 34, Issue: 3, March 2015, p367-380 [13] Marissa A. Caldwell, Rakesh Gnana David Jeyasingh, H.-S. Philip Wong and Delia J. Milliron, Nanoscale phase change memory materials, Nanoscale Issue 15, 2012, p4382-4392 [14] G. Muller ; T. Happ ; M. Kund ; Gill Yong Lee ; N. Nagel ; R. Sezi, Status and outlook of emerging nonvolatile memory technologies, IEEE, 2004 [15] 王韋婷, 應用在RRAM記憶體之氧化鋅薄膜及其電極材料開發, 清華大學, 碩士論文, 2007 [16] Sylvain Dubois, ReRAM enhances edge AI, EDN Network, June 07, 2018 [17] 吳明鴻, 王怡婷, 侯拓宏, 三維非絲狀路徑電阻式記憶體陣列於類神經網路運算之應用, 奈米通訊, 25卷, No.1, p25-29 [18] Hiro Akinaga, Hisashi Shima, ReRAM technology; challenges and prospects, IEICE Electronics Express, Vol.9, No.8, 2012, p795-807 [19] Hong Wang, Xiaobing Yan, Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanism, Performance Optimization and Prospects, IPSSrrl, May 2019, p1-29 [20] Mario Lanza, A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope, Materials 2014, 7, p2155-2182 [21] E. Souchier, F. D’Acapito, P. Noé, P. Blaise, M. Bernard and V. Jousseaume, The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories, Phys. Chem. Chem. Phys. 17, 2015, p23931--23937 [22] Debashis Panda, Tseung-Yuen Tseng, Perovskite Oxides as Resistive Switching Memories: A Review, Ferroelectrics, 471, 2014, p23–64 [23] Dongjue Liu, Qiqi Lin, Zhigang Zang, Ming Wang, Peihua Wangyang, Xiaosheng Tang, Miao Zhou, and Wei Hu, Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device, ACS Applied Materials & Interfaces · Jan 2017, p 6171-6176 [24] XiaoLiang Hong, Desmond JiaJun Loy, Putu Andhita Dananjaya, F. Tan, C.M. Ng & W.S. Lew, Oxide-based RRAM materials for neuromorphic computing, Journal of Material Science (2018) 53:8720-8746 [25] K.C Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, S.L. Chuang, C.H. Li, D.S. Gan and Simon M. Sze, The Effect of Silicon Oxide Based RRAM with Tin Doping, ECS, 2012, pH65-H68 [26] 張鼎張. 蔡宗鳴, 張冠張, 朱天健, 徐詠恩, 楊台發, 陳榮輝, 摻雜鋅之二氧化矽電阻式記憶體, 奈米通訊, 20卷, No.1, p2-11 [27] Rainer Waser, Masakazu Aono, Nanoionics-based resistive switching memories, Nature Materials 6, 2007, p833-840 [28] Akihito Sawa, Resistive switching in transition metal oxides, Materials Today, 2008.11(6), p28-36 [29] Daniele Ielmini, Rainer Bruchhaus, Rainer Waser, Thermochemical resistive switching: materials, mechanisms, and scaling projections, Transitions: A Multinational Journal, 84:7, 2011, p570-602 [30] Rainer Waser, Regina Dittmann, Georgi Staikov, Kristof Szot, Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials 21(25-26), July 2009, p2632-2663 [31] Ilia Valov, Rainer Waser, John R Jameson and Michael N Kozicki, Electrochemical metallization memories-fundamentals, applications, prosoects, Nanotechnology 22 254003, 2011 [32] Rainer Waser, Redox-Based Resistive Switching Memories, American Scientific Publishers Vol. 12, 2012, p7628–7640 [33] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, IEEE International Electron Devices Meeting, 2008, [34] Dongbin Zhu, Yi Li, Wensheng Shen, Zheng Zhou, Lifeng Liu, and Xing Zhang, Resistive random access memory and its applications in storage and nonvolatile logic, Journal of Semiconductors Vol.38 No.7, July 2017 [35] G.Y. Chen, F.M. Lee, Y.Y. Lin, P.H. Tseng, et al., The Impact of Forming Temperature and Voltage on the Reliability of Filamentary RRAM, VLSI-TSA, 2019 [36] C.H. Wang et al., Reliable and low forming voltage RRAM enabled by contact shrinking and pre-soldering baking, SSDM, 2018
|