帳號:guest(18.117.229.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠豫
作者(外文):Chen, Guan-Yu
論文名稱(中文):探討成形溫度與上電極材料對燈絲型電阻式記憶體可靠度之影響
論文名稱(外文):The Impact of Forming Temperature and Top Electrode Material on the Reliability of Filamentary ReRAM
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):楊智超
盧峙丞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063528
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:56
中文關鍵詞:電阻式記憶體溫度電極可靠度
外文關鍵詞:ReRAMRRAMFormingTemperatureElectrodePt
相關次數:
  • 推薦推薦:0
  • 點閱點閱:376
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電阻式記憶體(Resistive Random Access Memory,ReRAM)是近年來被開發的新興記憶體,被期待能夠取代快閃記憶體。本研究成功製造了以TiN/TiOx/WOx/W為基本結構的燈絲型電阻式記憶體,並從兩個方向探討了電阻式記憶體的可靠度問題:成型溫度與上部電極材料。我們在TiN/TiOx/WOx/W元件上評估成型溫度與所需電壓之間的相關性,然後進行包括循環耐久性(Cycling endurance)和數據保持性(Data retention)的可靠度測試,最後提出了一個模型來解釋結果。
ReRAM的導電機制與上部電極和金屬氧化物層密切相關。我們接著用Pt代替TiN做為TiN / TiOx / WOx / W ReRAM元件的上部電極,以闡明頂部電極材料與可靠性之間的關係。我們進行了循環耐久性等可靠性試驗。對於TiOx / WOx RRAM,以Pt做為上部電極的元件相較於以TiN做為上部電極的元件而言具有更好的特性。耐久性已經成功地從100個週期增加到超過3000個週期,此外寫入電流也明顯被降低了。
In this study, we successfully fabricated the RRAM device with TiN/TiOx/WOx/W structure and explored the reliability issue in two directions:forming temperature and top electrode material. The forming voltage and temperature for creating the first filament in the RRAM device are found having impacts on RRAM reliability. The correlation between the forming temperature and the required voltage was evaluated on the TiN/TiOx/WOx/W RRAM devices, and then the reliability tests including cycling endurance and data retention were performed. Finally, A model was proposed to explain the results.
Moreover, the conduction mechanism of the RRAM is closely related to the top electrode and the metal oxide layer. The top electrode of the TiN/TiOx/WOx/W RRAM device was replaced by Pt to elucidate the relationship between top electrode material and the reliability. The reliability tests such as cycling endurance were performed. For TiOx/WOx RRAM, Pt top electrode devices exhibited better characteristic than TiN top electrode devices. The endurance has been increased successfully from 100 cycles to more than 3000 cycles, and the write current was also reduced.
摘要---------------------------------------------I
Abstract-----------------------------------------II
誌 謝--------------------------------------------III
Contents-----------------------------------------IV
List of Figures----------------------------------VI
List of tables-----------------------------------VIII
Chapter 1 Introduction---------------------------1
Chapter 2 Literature-----------------------------3
2-1 Introduction of memory-----------------------3
2-1.1 Volatile memory----------------------------3
2-1.2 Non-volatile memory------------------------4
2-2 Emerging non-volatile memory-----------------5
2-2.1 Ferroelectric RAM--------------------------5
2-2.2 Magnetic RAM-------------------------------6
2-2.3 Phase change RAM---------------------------7
2-2.4 Resistance RAM-----------------------------7
2-3 Resistance random-access memory--------------8
2-3.1 Material of resistance layer---------------8
2-3.2 Mechanism of resistance switching----------11
Chapter 3 Experiments and procedures-------------25
3-1 1Mb test chip fabrication--------------------25
3-2 Experiment procedure-------------------------27
3-2.1 Forming performance------------------------27
3-2.2 Reliability analysis-----------------------27
3-2.3 Top electrode effect-----------------------27
Chapter 4 Results and discussion-----------------33
4-1 ReRAM operation------------------------------33
4-1.1 Forming------------------------------------33
4-1.2 SET and RESET------------------------------34
4-2 Impact of high forming temperature-----------35
4-2.1 Forming voltage and performance------------35
4-2.2 Endurance----------------------------------37
4-2.3 Retention----------------------------------37
4-2.4 Model of filament--------------------------38
4-3 Impact of different top electrode------------39
4-3.1 Operation----------------------------------40
4-3.2 TiN top electrode--------------------------40
4-3.3 Pt top electrode---------------------------41
Chapter 5 Conclusion and Future work-------------52
5-1 Conclusion-----------------------------------52
5-2 Future work----------------------------------53
Reference----------------------------------------54

[1] 張鼎張, 施志承, 陳柏勳, 次世代電阻式記憶體發展, 自然科學簡訊第三十卷第一期, 2018
[2] Jalil Boukhobza, Pierre Olivier, Flash Memory Integration, 2017, p203-224
[3] Jagan Singh Meena, Simon Min Sze, Umesh Chand and Tseung-Yuen Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Research Letters, 2014, p9-526
[4] Christian Nauenheim, Integration of resistive switching devices in crossbar structures, 2009, p7-22
[5] Yan Li, Khandker N. Quader, NAND Flash Memory: Challenges and Opportunities. IEEE, 2013, p.23-29
[6] S. K. Lai, Floating gate memories: Moore’s law continues, International Symposium on VLSI Technology, April 2005, p.74-77
[7] Monal Gupta, Dr. Jyoti Kedia, A Review on Resistive Random Access Memory, Volume 7, Issue 3, March 2018, p184-191
[8] Stephen Evanczuk, FRAM ICs Extend Endurance in Low-Power Applications, Digi-Key Electronics, 2015
[9] Jim Handy, What’s the Difference Between All Those Emerging Memory Technologies?, ElectronicDesign, Jan 25, 2018
[10] Yiming Huai, Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects, AAPPS Bulletin, December 2008, Vol. 18, No. 6, p.33-40
[11] Noriyuki Sato, Fen Xue, Robert M White, Chong Bi, Shan X Wang, Two-terminal spin–orbit torque magnetoresistive random access memory, Nature Electron, 2018, p.508-511
[12] Fabian Oboril, Rajendra Bishnoi, Mojtaba Ebrahimi and Mehdi B. Tahoori, Evaluation of Hybrid Memory Technologies using SOT-MRAM for On-Chip Cache Hierarchy, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol 34, Issue: 3, March 2015, p367-380
[13] Marissa A. Caldwell, Rakesh Gnana David Jeyasingh, H.-S. Philip Wong and Delia J. Milliron, Nanoscale phase change memory materials, Nanoscale Issue 15, 2012, p4382-4392
[14] G. Muller ; T. Happ ; M. Kund ; Gill Yong Lee ; N. Nagel ; R. Sezi, Status and outlook of emerging nonvolatile memory technologies, IEEE, 2004
[15] 王韋婷, 應用在RRAM記憶體之氧化鋅薄膜及其電極材料開發, 清華大學, 碩士論文, 2007
[16] Sylvain Dubois, ReRAM enhances edge AI, EDN Network, June 07, 2018
[17] 吳明鴻, 王怡婷, 侯拓宏, 三維非絲狀路徑電阻式記憶體陣列於類神經網路運算之應用, 奈米通訊, 25卷, No.1, p25-29
[18] Hiro Akinaga, Hisashi Shima, ReRAM technology; challenges and prospects, IEICE Electronics Express, Vol.9, No.8, 2012, p795-807
[19] Hong Wang, Xiaobing Yan, Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanism, Performance Optimization and Prospects, IPSSrrl, May 2019, p1-29
[20] Mario Lanza, A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope, Materials 2014, 7, p2155-2182
[21] E. Souchier, F. D’Acapito, P. Noé, P. Blaise, M. Bernard and V. Jousseaume, The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories, Phys. Chem. Chem. Phys. 17, 2015, p23931--23937
[22] Debashis Panda, Tseung-Yuen Tseng, Perovskite Oxides as Resistive Switching Memories: A Review, Ferroelectrics, 471, 2014, p23–64
[23] Dongjue Liu, Qiqi Lin, Zhigang Zang, Ming Wang, Peihua Wangyang, Xiaosheng Tang, Miao Zhou, and Wei Hu, Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device, ACS Applied Materials & Interfaces · Jan 2017, p 6171-6176
[24] XiaoLiang Hong, Desmond JiaJun Loy, Putu Andhita Dananjaya, F. Tan, C.M. Ng & W.S. Lew, Oxide-based RRAM materials for neuromorphic computing, Journal of Material Science (2018) 53:8720-8746
[25] K.C Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, S.L. Chuang, C.H. Li, D.S. Gan and Simon M. Sze, The Effect of Silicon Oxide Based RRAM with Tin Doping, ECS, 2012, pH65-H68
[26] 張鼎張. 蔡宗鳴, 張冠張, 朱天健, 徐詠恩, 楊台發, 陳榮輝, 摻雜鋅之二氧化矽電阻式記憶體, 奈米通訊, 20卷, No.1, p2-11
[27] Rainer Waser, Masakazu Aono, Nanoionics-based resistive switching memories, Nature Materials 6, 2007, p833-840
[28] Akihito Sawa, Resistive switching in transition metal oxides, Materials Today, 2008.11(6), p28-36
[29] Daniele Ielmini, Rainer Bruchhaus, Rainer Waser, Thermochemical resistive switching: materials, mechanisms, and scaling projections, Transitions: A Multinational Journal, 84:7, 2011, p570-602
[30] Rainer Waser, Regina Dittmann, Georgi Staikov, Kristof Szot, Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials 21(25-26), July 2009, p2632-2663
[31] Ilia Valov, Rainer Waser, John R Jameson and Michael N Kozicki, Electrochemical metallization memories-fundamentals, applications, prosoects, Nanotechnology 22 254003, 2011
[32] Rainer Waser, Redox-Based Resistive Switching Memories, American Scientific Publishers Vol. 12, 2012, p7628–7640
[33] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, IEEE International Electron Devices Meeting, 2008,
[34] Dongbin Zhu, Yi Li, Wensheng Shen, Zheng Zhou, Lifeng Liu, and Xing Zhang, Resistive random access memory and its applications in storage and nonvolatile logic, Journal of Semiconductors Vol.38 No.7, July 2017
[35] G.Y. Chen, F.M. Lee, Y.Y. Lin, P.H. Tseng, et al., The Impact of Forming Temperature and Voltage on the Reliability of Filamentary RRAM, VLSI-TSA, 2019
[36] C.H. Wang et al., Reliable and low forming voltage RRAM enabled by contact shrinking and pre-soldering baking, SSDM, 2018
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *